Metamath Proof Explorer


Theorem iunxsn

Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004) (Proof shortened by Mario Carneiro, 25-Jun-2016)

Ref Expression
Hypotheses iunxsn.1 𝐴 ∈ V
iunxsn.2 ( 𝑥 = 𝐴𝐵 = 𝐶 )
Assertion iunxsn 𝑥 ∈ { 𝐴 } 𝐵 = 𝐶

Proof

Step Hyp Ref Expression
1 iunxsn.1 𝐴 ∈ V
2 iunxsn.2 ( 𝑥 = 𝐴𝐵 = 𝐶 )
3 2 iunxsng ( 𝐴 ∈ V → 𝑥 ∈ { 𝐴 } 𝐵 = 𝐶 )
4 1 3 ax-mp 𝑥 ∈ { 𝐴 } 𝐵 = 𝐶