Metamath Proof Explorer
		
		
		
		Description:  A singleton index picks out an instance of an indexed union's argument.
       (Contributed by Glauco Siliprandi, 17-Aug-2020)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						iunxsnf.1 | 
						⊢ Ⅎ 𝑥 𝐶  | 
					
					
						 | 
						 | 
						iunxsnf.2 | 
						⊢ 𝐴  ∈  V  | 
					
					
						 | 
						 | 
						iunxsnf.3 | 
						⊢ ( 𝑥  =  𝐴  →  𝐵  =  𝐶 )  | 
					
				
					 | 
					Assertion | 
					iunxsnf | 
					⊢  ∪  𝑥  ∈  { 𝐴 } 𝐵  =  𝐶  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iunxsnf.1 | 
							⊢ Ⅎ 𝑥 𝐶  | 
						
						
							| 2 | 
							
								
							 | 
							iunxsnf.2 | 
							⊢ 𝐴  ∈  V  | 
						
						
							| 3 | 
							
								
							 | 
							iunxsnf.3 | 
							⊢ ( 𝑥  =  𝐴  →  𝐵  =  𝐶 )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							iunxsngf | 
							⊢ ( 𝐴  ∈  V  →  ∪  𝑥  ∈  { 𝐴 } 𝐵  =  𝐶 )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							ax-mp | 
							⊢ ∪  𝑥  ∈  { 𝐴 } 𝐵  =  𝐶  |