Metamath Proof Explorer


Theorem iunxsng

Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016)

Ref Expression
Hypothesis iunxsng.1 ( 𝑥 = 𝐴𝐵 = 𝐶 )
Assertion iunxsng ( 𝐴𝑉 𝑥 ∈ { 𝐴 } 𝐵 = 𝐶 )

Proof

Step Hyp Ref Expression
1 iunxsng.1 ( 𝑥 = 𝐴𝐵 = 𝐶 )
2 eliun ( 𝑦 𝑥 ∈ { 𝐴 } 𝐵 ↔ ∃ 𝑥 ∈ { 𝐴 } 𝑦𝐵 )
3 1 eleq2d ( 𝑥 = 𝐴 → ( 𝑦𝐵𝑦𝐶 ) )
4 3 rexsng ( 𝐴𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝑦𝐵𝑦𝐶 ) )
5 2 4 syl5bb ( 𝐴𝑉 → ( 𝑦 𝑥 ∈ { 𝐴 } 𝐵𝑦𝐶 ) )
6 5 eqrdv ( 𝐴𝑉 𝑥 ∈ { 𝐴 } 𝐵 = 𝐶 )