Metamath Proof Explorer


Theorem iunxsngf

Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016) (Revised by Thierry Arnoux, 2-May-2020) Avoid ax-13 . (Revised by Gino Giotto, 19-May-2023)

Ref Expression
Hypotheses iunxsngf.1 𝑥 𝐶
iunxsngf.2 ( 𝑥 = 𝐴𝐵 = 𝐶 )
Assertion iunxsngf ( 𝐴𝑉 𝑥 ∈ { 𝐴 } 𝐵 = 𝐶 )

Proof

Step Hyp Ref Expression
1 iunxsngf.1 𝑥 𝐶
2 iunxsngf.2 ( 𝑥 = 𝐴𝐵 = 𝐶 )
3 eliun ( 𝑦 𝑥 ∈ { 𝐴 } 𝐵 ↔ ∃ 𝑥 ∈ { 𝐴 } 𝑦𝐵 )
4 1 nfcri 𝑥 𝑦𝐶
5 2 eleq2d ( 𝑥 = 𝐴 → ( 𝑦𝐵𝑦𝐶 ) )
6 4 5 rexsngf ( 𝐴𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝑦𝐵𝑦𝐶 ) )
7 3 6 syl5bb ( 𝐴𝑉 → ( 𝑦 𝑥 ∈ { 𝐴 } 𝐵𝑦𝐶 ) )
8 7 eqrdv ( 𝐴𝑉 𝑥 ∈ { 𝐴 } 𝐵 = 𝐶 )