Step |
Hyp |
Ref |
Expression |
1 |
|
rexun |
⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝑦 ∈ 𝐶 ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) ) |
2 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) |
3 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) |
4 |
2 3
|
orbi12i |
⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) ) |
5 |
1 4
|
bitr4i |
⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝑦 ∈ 𝐶 ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ) ) |
6 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ↔ ∃ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝑦 ∈ 𝐶 ) |
7 |
|
elun |
⊢ ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶 ) ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ) ) |
8 |
5 6 7
|
3bitr4i |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ↔ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶 ) ) |
9 |
8
|
eqriv |
⊢ ∪ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 = ( ∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶 ) |