Metamath Proof Explorer


Theorem iunxun

Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004) (Proof shortened by Mario Carneiro, 17-Nov-2016)

Ref Expression
Assertion iunxun 𝑥 ∈ ( 𝐴𝐵 ) 𝐶 = ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 rexun ( ∃ 𝑥 ∈ ( 𝐴𝐵 ) 𝑦𝐶 ↔ ( ∃ 𝑥𝐴 𝑦𝐶 ∨ ∃ 𝑥𝐵 𝑦𝐶 ) )
2 eliun ( 𝑦 𝑥𝐴 𝐶 ↔ ∃ 𝑥𝐴 𝑦𝐶 )
3 eliun ( 𝑦 𝑥𝐵 𝐶 ↔ ∃ 𝑥𝐵 𝑦𝐶 )
4 2 3 orbi12i ( ( 𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦𝐶 ∨ ∃ 𝑥𝐵 𝑦𝐶 ) )
5 1 4 bitr4i ( ∃ 𝑥 ∈ ( 𝐴𝐵 ) 𝑦𝐶 ↔ ( 𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶 ) )
6 eliun ( 𝑦 𝑥 ∈ ( 𝐴𝐵 ) 𝐶 ↔ ∃ 𝑥 ∈ ( 𝐴𝐵 ) 𝑦𝐶 )
7 elun ( 𝑦 ∈ ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶 ) ↔ ( 𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶 ) )
8 5 6 7 3bitr4i ( 𝑦 𝑥 ∈ ( 𝐴𝐵 ) 𝐶𝑦 ∈ ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶 ) )
9 8 eqriv 𝑥 ∈ ( 𝐴𝐵 ) 𝐶 = ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶 )