Metamath Proof Explorer


Theorem iunxunpr

Description: Appending two sets to an indexed union. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Hypotheses iunxunsn.1 ( 𝑥 = 𝑋𝐵 = 𝐶 )
iunxunpr.2 ( 𝑥 = 𝑌𝐵 = 𝐷 )
Assertion iunxunpr ( ( 𝑋𝑉𝑌𝑊 ) → 𝑥 ∈ ( 𝐴 ∪ { 𝑋 , 𝑌 } ) 𝐵 = ( 𝑥𝐴 𝐵 ∪ ( 𝐶𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 iunxunsn.1 ( 𝑥 = 𝑋𝐵 = 𝐶 )
2 iunxunpr.2 ( 𝑥 = 𝑌𝐵 = 𝐷 )
3 iunxun 𝑥 ∈ ( 𝐴 ∪ { 𝑋 , 𝑌 } ) 𝐵 = ( 𝑥𝐴 𝐵 𝑥 ∈ { 𝑋 , 𝑌 } 𝐵 )
4 1 2 iunxprg ( ( 𝑋𝑉𝑌𝑊 ) → 𝑥 ∈ { 𝑋 , 𝑌 } 𝐵 = ( 𝐶𝐷 ) )
5 4 uneq2d ( ( 𝑋𝑉𝑌𝑊 ) → ( 𝑥𝐴 𝐵 𝑥 ∈ { 𝑋 , 𝑌 } 𝐵 ) = ( 𝑥𝐴 𝐵 ∪ ( 𝐶𝐷 ) ) )
6 3 5 syl5eq ( ( 𝑋𝑉𝑌𝑊 ) → 𝑥 ∈ ( 𝐴 ∪ { 𝑋 , 𝑌 } ) 𝐵 = ( 𝑥𝐴 𝐵 ∪ ( 𝐶𝐷 ) ) )