Description: Appending two sets to an indexed union. (Contributed by Thierry Arnoux, 20-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iunxunsn.1 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | |
iunxunpr.2 | ⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝐷 ) | ||
Assertion | iunxunpr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ∪ 𝑥 ∈ ( 𝐴 ∪ { 𝑋 , 𝑌 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ( 𝐶 ∪ 𝐷 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxunsn.1 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | |
2 | iunxunpr.2 | ⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝐷 ) | |
3 | iunxun | ⊢ ∪ 𝑥 ∈ ( 𝐴 ∪ { 𝑋 , 𝑌 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ { 𝑋 , 𝑌 } 𝐵 ) | |
4 | 1 2 | iunxprg | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ∪ 𝑥 ∈ { 𝑋 , 𝑌 } 𝐵 = ( 𝐶 ∪ 𝐷 ) ) |
5 | 4 | uneq2d | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ { 𝑋 , 𝑌 } 𝐵 ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ( 𝐶 ∪ 𝐷 ) ) ) |
6 | 3 5 | syl5eq | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ∪ 𝑥 ∈ ( 𝐴 ∪ { 𝑋 , 𝑌 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ( 𝐶 ∪ 𝐷 ) ) ) |