Step |
Hyp |
Ref |
Expression |
1 |
|
ivth.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ivth.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ivth.3 |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
4 |
|
ivth.4 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
5 |
|
ivth.5 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) |
6 |
|
ivth.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
7 |
|
ivth.8 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
8 |
|
ivth.9 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
10 |
9
|
breq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ↔ ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 ) ) |
11 |
10
|
cbvrabv |
⊢ { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 } |
12 |
|
eqid |
⊢ sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) = sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) |
13 |
1 2 3 4 5 6 7 8 11 12
|
ivthlem3 |
⊢ ( 𝜑 → ( sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) ∈ ( 𝐴 (,) 𝐵 ) ∧ ( 𝐹 ‘ sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) ) = 𝑈 ) ) |
14 |
|
fveqeq2 |
⊢ ( 𝑐 = sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) → ( ( 𝐹 ‘ 𝑐 ) = 𝑈 ↔ ( 𝐹 ‘ sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) ) = 𝑈 ) ) |
15 |
14
|
rspcev |
⊢ ( ( sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) ∈ ( 𝐴 (,) 𝐵 ) ∧ ( 𝐹 ‘ sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) ) = 𝑈 ) → ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
16 |
13 15
|
syl |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |