| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ivth.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ivth.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
ivth.3 |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
| 4 |
|
ivth.4 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 5 |
|
ivth.5 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) |
| 6 |
|
ivth.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 7 |
|
ivth.8 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 8 |
|
ivth2.9 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐴 ) ) ) |
| 9 |
3
|
renegcld |
⊢ ( 𝜑 → - 𝑈 ∈ ℝ ) |
| 10 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) |
| 11 |
10
|
negfcncf |
⊢ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) → ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ∈ ( 𝐷 –cn→ ℂ ) ) |
| 12 |
6 11
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ∈ ( 𝐷 –cn→ ℂ ) ) |
| 13 |
5
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ 𝐷 ) |
| 14 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 15 |
14
|
negeqd |
⊢ ( 𝑦 = 𝑥 → - ( 𝐹 ‘ 𝑦 ) = - ( 𝐹 ‘ 𝑥 ) ) |
| 16 |
|
negex |
⊢ - ( 𝐹 ‘ 𝑥 ) ∈ V |
| 17 |
15 10 16
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ) |
| 18 |
13 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ) |
| 19 |
7
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → - ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 20 |
18 19
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ ℝ ) |
| 21 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 22 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 23 |
1 2 4
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 24 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 25 |
21 22 23 24
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 26 |
5 25
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
| 27 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 28 |
27
|
negeqd |
⊢ ( 𝑦 = 𝐴 → - ( 𝐹 ‘ 𝑦 ) = - ( 𝐹 ‘ 𝐴 ) ) |
| 29 |
|
negex |
⊢ - ( 𝐹 ‘ 𝐴 ) ∈ V |
| 30 |
28 10 29
|
fvmpt |
⊢ ( 𝐴 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 ) = - ( 𝐹 ‘ 𝐴 ) ) |
| 31 |
26 30
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 ) = - ( 𝐹 ‘ 𝐴 ) ) |
| 32 |
8
|
simprd |
⊢ ( 𝜑 → 𝑈 < ( 𝐹 ‘ 𝐴 ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 34 |
33
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) ) |
| 35 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 36 |
34 35 25
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 37 |
3 36
|
ltnegd |
⊢ ( 𝜑 → ( 𝑈 < ( 𝐹 ‘ 𝐴 ) ↔ - ( 𝐹 ‘ 𝐴 ) < - 𝑈 ) ) |
| 38 |
32 37
|
mpbid |
⊢ ( 𝜑 → - ( 𝐹 ‘ 𝐴 ) < - 𝑈 ) |
| 39 |
31 38
|
eqbrtrd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 ) < - 𝑈 ) |
| 40 |
8
|
simpld |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) < 𝑈 ) |
| 41 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 42 |
41
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) ) |
| 43 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 44 |
21 22 23 43
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 45 |
42 35 44
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 46 |
45 3
|
ltnegd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) < 𝑈 ↔ - 𝑈 < - ( 𝐹 ‘ 𝐵 ) ) ) |
| 47 |
40 46
|
mpbid |
⊢ ( 𝜑 → - 𝑈 < - ( 𝐹 ‘ 𝐵 ) ) |
| 48 |
5 44
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
| 49 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 50 |
49
|
negeqd |
⊢ ( 𝑦 = 𝐵 → - ( 𝐹 ‘ 𝑦 ) = - ( 𝐹 ‘ 𝐵 ) ) |
| 51 |
|
negex |
⊢ - ( 𝐹 ‘ 𝐵 ) ∈ V |
| 52 |
50 10 51
|
fvmpt |
⊢ ( 𝐵 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 ) = - ( 𝐹 ‘ 𝐵 ) ) |
| 53 |
48 52
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 ) = - ( 𝐹 ‘ 𝐵 ) ) |
| 54 |
47 53
|
breqtrrd |
⊢ ( 𝜑 → - 𝑈 < ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 ) ) |
| 55 |
39 54
|
jca |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐴 ) < - 𝑈 ∧ - 𝑈 < ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝐵 ) ) ) |
| 56 |
1 2 9 4 5 12 20 55
|
ivth |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑐 ) = - 𝑈 ) |
| 57 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 58 |
57 5
|
sstrid |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
| 59 |
58
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑐 ∈ 𝐷 ) |
| 60 |
|
fveq2 |
⊢ ( 𝑦 = 𝑐 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑐 ) ) |
| 61 |
60
|
negeqd |
⊢ ( 𝑦 = 𝑐 → - ( 𝐹 ‘ 𝑦 ) = - ( 𝐹 ‘ 𝑐 ) ) |
| 62 |
|
negex |
⊢ - ( 𝐹 ‘ 𝑐 ) ∈ V |
| 63 |
61 10 62
|
fvmpt |
⊢ ( 𝑐 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑐 ) = - ( 𝐹 ‘ 𝑐 ) ) |
| 64 |
59 63
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑐 ) = - ( 𝐹 ‘ 𝑐 ) ) |
| 65 |
64
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑐 ) = - 𝑈 ↔ - ( 𝐹 ‘ 𝑐 ) = - 𝑈 ) ) |
| 66 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) → 𝐹 : 𝐷 ⟶ ℂ ) |
| 67 |
6 66
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
| 68 |
67
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑐 ) ∈ ℂ ) |
| 69 |
59 68
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℂ ) |
| 70 |
3
|
recnd |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑈 ∈ ℂ ) |
| 72 |
69 71
|
neg11ad |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → ( - ( 𝐹 ‘ 𝑐 ) = - 𝑈 ↔ ( 𝐹 ‘ 𝑐 ) = 𝑈 ) ) |
| 73 |
65 72
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑐 ) = - 𝑈 ↔ ( 𝐹 ‘ 𝑐 ) = 𝑈 ) ) |
| 74 |
73
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑦 ∈ 𝐷 ↦ - ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑐 ) = - 𝑈 ↔ ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) ) |
| 75 |
56 74
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |