| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ivthicc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ivthicc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
ivthicc.3 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 4 |
|
ivthicc.4 |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 5 |
|
ivthicc.5 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) |
| 6 |
|
ivthicc.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 7 |
|
ivthicc.8 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 8 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝜑 ) |
| 9 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵 ) ) ) |
| 10 |
1 2 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵 ) ) ) |
| 11 |
3 10
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵 ) ) |
| 12 |
11
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ℝ ) |
| 14 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑁 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵 ) ) ) |
| 15 |
1 2 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵 ) ) ) |
| 16 |
4 15
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵 ) ) |
| 17 |
16
|
simp1d |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑁 ∈ ℝ ) |
| 19 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 20 |
19
|
eleq1d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) ) |
| 21 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 22 |
20 21 3
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
| 23 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 24 |
23
|
eleq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) ) |
| 25 |
24 21 4
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
| 26 |
|
iccssre |
⊢ ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ⊆ ℝ ) |
| 27 |
22 25 26
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ⊆ ℝ ) |
| 28 |
27
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → 𝑦 ∈ ℝ ) |
| 29 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑦 ∈ ℝ ) |
| 30 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑀 < 𝑁 ) |
| 31 |
11
|
simp2d |
⊢ ( 𝜑 → 𝐴 ≤ 𝑀 ) |
| 32 |
16
|
simp3d |
⊢ ( 𝜑 → 𝑁 ≤ 𝐵 ) |
| 33 |
|
iccss |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 ≤ 𝑀 ∧ 𝑁 ≤ 𝐵 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 34 |
1 2 31 32 33
|
syl22anc |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 35 |
34 5
|
sstrd |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ 𝐷 ) |
| 36 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → ( 𝑀 [,] 𝑁 ) ⊆ 𝐷 ) |
| 37 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 38 |
34
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 39 |
38 7
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 40 |
8 39
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 41 |
|
elicc2 |
⊢ ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) → ( 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 42 |
22 25 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 43 |
42
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
| 44 |
|
3simpc |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) → ( ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
| 45 |
43 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
| 46 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
| 47 |
13 18 29 30 36 37 40 46
|
ivthle |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → ∃ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) |
| 48 |
35
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑧 ∈ 𝐷 ) |
| 49 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) → 𝐹 : 𝐷 ⟶ ℂ ) |
| 50 |
|
ffn |
⊢ ( 𝐹 : 𝐷 ⟶ ℂ → 𝐹 Fn 𝐷 ) |
| 51 |
6 49 50
|
3syl |
⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
| 52 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝑧 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) |
| 53 |
51 52
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) |
| 54 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ↔ 𝑦 ∈ ran 𝐹 ) ) |
| 55 |
53 54
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
| 56 |
48 55
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
| 57 |
56
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
| 58 |
8 47 57
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑦 ∈ ran 𝐹 ) |
| 59 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) |
| 60 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑀 = 𝑁 ) |
| 61 |
60
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( 𝐹 ‘ 𝑀 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 62 |
61
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑀 ) ) = ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) |
| 63 |
22
|
rexrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) |
| 64 |
63
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) |
| 65 |
|
iccid |
⊢ ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑀 ) ) = { ( 𝐹 ‘ 𝑀 ) } ) |
| 66 |
64 65
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑀 ) ) = { ( 𝐹 ‘ 𝑀 ) } ) |
| 67 |
62 66
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) = { ( 𝐹 ‘ 𝑀 ) } ) |
| 68 |
59 67
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑦 ∈ { ( 𝐹 ‘ 𝑀 ) } ) |
| 69 |
|
elsni |
⊢ ( 𝑦 ∈ { ( 𝐹 ‘ 𝑀 ) } → 𝑦 = ( 𝐹 ‘ 𝑀 ) ) |
| 70 |
68 69
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑦 = ( 𝐹 ‘ 𝑀 ) ) |
| 71 |
5 3
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ 𝐷 ) |
| 72 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝑀 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
| 73 |
51 71 72
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
| 74 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
| 75 |
70 74
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑦 ∈ ran 𝐹 ) |
| 76 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝜑 ) |
| 77 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑁 ∈ ℝ ) |
| 78 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑀 ∈ ℝ ) |
| 79 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑦 ∈ ℝ ) |
| 80 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑁 < 𝑀 ) |
| 81 |
16
|
simp2d |
⊢ ( 𝜑 → 𝐴 ≤ 𝑁 ) |
| 82 |
11
|
simp3d |
⊢ ( 𝜑 → 𝑀 ≤ 𝐵 ) |
| 83 |
|
iccss |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 ≤ 𝑁 ∧ 𝑀 ≤ 𝐵 ) ) → ( 𝑁 [,] 𝑀 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 84 |
1 2 81 82 83
|
syl22anc |
⊢ ( 𝜑 → ( 𝑁 [,] 𝑀 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 85 |
84 5
|
sstrd |
⊢ ( 𝜑 → ( 𝑁 [,] 𝑀 ) ⊆ 𝐷 ) |
| 86 |
85
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → ( 𝑁 [,] 𝑀 ) ⊆ 𝐷 ) |
| 87 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 88 |
84
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 [,] 𝑀 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 89 |
88 7
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 [,] 𝑀 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 90 |
76 89
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) ∧ 𝑥 ∈ ( 𝑁 [,] 𝑀 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 91 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → ( ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
| 92 |
77 78 79 80 86 87 90 91
|
ivthle2 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → ∃ 𝑧 ∈ ( 𝑁 [,] 𝑀 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) |
| 93 |
85
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑁 [,] 𝑀 ) ) → 𝑧 ∈ 𝐷 ) |
| 94 |
93 55
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑁 [,] 𝑀 ) ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
| 95 |
94
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑁 [,] 𝑀 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
| 96 |
76 92 95
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑦 ∈ ran 𝐹 ) |
| 97 |
12 17
|
lttri4d |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) |
| 99 |
58 75 96 98
|
mpjao3dan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → 𝑦 ∈ ran 𝐹 ) |
| 100 |
99
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) → 𝑦 ∈ ran 𝐹 ) ) |
| 101 |
100
|
ssrdv |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ⊆ ran 𝐹 ) |