Metamath Proof Explorer


Theorem ivthle

Description: The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses ivth.1 ( 𝜑𝐴 ∈ ℝ )
ivth.2 ( 𝜑𝐵 ∈ ℝ )
ivth.3 ( 𝜑𝑈 ∈ ℝ )
ivth.4 ( 𝜑𝐴 < 𝐵 )
ivth.5 ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 )
ivth.7 ( 𝜑𝐹 ∈ ( 𝐷cn→ ℂ ) )
ivth.8 ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹𝑥 ) ∈ ℝ )
ivthle.9 ( 𝜑 → ( ( 𝐹𝐴 ) ≤ 𝑈𝑈 ≤ ( 𝐹𝐵 ) ) )
Assertion ivthle ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑐 ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 ivth.1 ( 𝜑𝐴 ∈ ℝ )
2 ivth.2 ( 𝜑𝐵 ∈ ℝ )
3 ivth.3 ( 𝜑𝑈 ∈ ℝ )
4 ivth.4 ( 𝜑𝐴 < 𝐵 )
5 ivth.5 ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 )
6 ivth.7 ( 𝜑𝐹 ∈ ( 𝐷cn→ ℂ ) )
7 ivth.8 ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹𝑥 ) ∈ ℝ )
8 ivthle.9 ( 𝜑 → ( ( 𝐹𝐴 ) ≤ 𝑈𝑈 ≤ ( 𝐹𝐵 ) ) )
9 ioossicc ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 )
10 1 adantr ( ( 𝜑 ∧ ( ( 𝐹𝐴 ) < 𝑈𝑈 < ( 𝐹𝐵 ) ) ) → 𝐴 ∈ ℝ )
11 2 adantr ( ( 𝜑 ∧ ( ( 𝐹𝐴 ) < 𝑈𝑈 < ( 𝐹𝐵 ) ) ) → 𝐵 ∈ ℝ )
12 3 adantr ( ( 𝜑 ∧ ( ( 𝐹𝐴 ) < 𝑈𝑈 < ( 𝐹𝐵 ) ) ) → 𝑈 ∈ ℝ )
13 4 adantr ( ( 𝜑 ∧ ( ( 𝐹𝐴 ) < 𝑈𝑈 < ( 𝐹𝐵 ) ) ) → 𝐴 < 𝐵 )
14 5 adantr ( ( 𝜑 ∧ ( ( 𝐹𝐴 ) < 𝑈𝑈 < ( 𝐹𝐵 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 )
15 6 adantr ( ( 𝜑 ∧ ( ( 𝐹𝐴 ) < 𝑈𝑈 < ( 𝐹𝐵 ) ) ) → 𝐹 ∈ ( 𝐷cn→ ℂ ) )
16 7 adantlr ( ( ( 𝜑 ∧ ( ( 𝐹𝐴 ) < 𝑈𝑈 < ( 𝐹𝐵 ) ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹𝑥 ) ∈ ℝ )
17 simpr ( ( 𝜑 ∧ ( ( 𝐹𝐴 ) < 𝑈𝑈 < ( 𝐹𝐵 ) ) ) → ( ( 𝐹𝐴 ) < 𝑈𝑈 < ( 𝐹𝐵 ) ) )
18 10 11 12 13 14 15 16 17 ivth ( ( 𝜑 ∧ ( ( 𝐹𝐴 ) < 𝑈𝑈 < ( 𝐹𝐵 ) ) ) → ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹𝑐 ) = 𝑈 )
19 ssrexv ( ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹𝑐 ) = 𝑈 → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑐 ) = 𝑈 ) )
20 9 18 19 mpsyl ( ( 𝜑 ∧ ( ( 𝐹𝐴 ) < 𝑈𝑈 < ( 𝐹𝐵 ) ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑐 ) = 𝑈 )
21 20 anassrs ( ( ( 𝜑 ∧ ( 𝐹𝐴 ) < 𝑈 ) ∧ 𝑈 < ( 𝐹𝐵 ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑐 ) = 𝑈 )
22 1 rexrd ( 𝜑𝐴 ∈ ℝ* )
23 2 rexrd ( 𝜑𝐵 ∈ ℝ* )
24 1 2 4 ltled ( 𝜑𝐴𝐵 )
25 ubicc2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) )
26 22 23 24 25 syl3anc ( 𝜑𝐵 ∈ ( 𝐴 [,] 𝐵 ) )
27 eqcom ( ( 𝐹𝑐 ) = 𝑈𝑈 = ( 𝐹𝑐 ) )
28 fveq2 ( 𝑐 = 𝐵 → ( 𝐹𝑐 ) = ( 𝐹𝐵 ) )
29 28 eqeq2d ( 𝑐 = 𝐵 → ( 𝑈 = ( 𝐹𝑐 ) ↔ 𝑈 = ( 𝐹𝐵 ) ) )
30 27 29 syl5bb ( 𝑐 = 𝐵 → ( ( 𝐹𝑐 ) = 𝑈𝑈 = ( 𝐹𝐵 ) ) )
31 30 rspcev ( ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑈 = ( 𝐹𝐵 ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑐 ) = 𝑈 )
32 26 31 sylan ( ( 𝜑𝑈 = ( 𝐹𝐵 ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑐 ) = 𝑈 )
33 32 adantlr ( ( ( 𝜑 ∧ ( 𝐹𝐴 ) < 𝑈 ) ∧ 𝑈 = ( 𝐹𝐵 ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑐 ) = 𝑈 )
34 8 simprd ( 𝜑𝑈 ≤ ( 𝐹𝐵 ) )
35 fveq2 ( 𝑥 = 𝐵 → ( 𝐹𝑥 ) = ( 𝐹𝐵 ) )
36 35 eleq1d ( 𝑥 = 𝐵 → ( ( 𝐹𝑥 ) ∈ ℝ ↔ ( 𝐹𝐵 ) ∈ ℝ ) )
37 7 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑥 ) ∈ ℝ )
38 36 37 26 rspcdva ( 𝜑 → ( 𝐹𝐵 ) ∈ ℝ )
39 3 38 leloed ( 𝜑 → ( 𝑈 ≤ ( 𝐹𝐵 ) ↔ ( 𝑈 < ( 𝐹𝐵 ) ∨ 𝑈 = ( 𝐹𝐵 ) ) ) )
40 34 39 mpbid ( 𝜑 → ( 𝑈 < ( 𝐹𝐵 ) ∨ 𝑈 = ( 𝐹𝐵 ) ) )
41 40 adantr ( ( 𝜑 ∧ ( 𝐹𝐴 ) < 𝑈 ) → ( 𝑈 < ( 𝐹𝐵 ) ∨ 𝑈 = ( 𝐹𝐵 ) ) )
42 21 33 41 mpjaodan ( ( 𝜑 ∧ ( 𝐹𝐴 ) < 𝑈 ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑐 ) = 𝑈 )
43 lbicc2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) )
44 22 23 24 43 syl3anc ( 𝜑𝐴 ∈ ( 𝐴 [,] 𝐵 ) )
45 fveqeq2 ( 𝑐 = 𝐴 → ( ( 𝐹𝑐 ) = 𝑈 ↔ ( 𝐹𝐴 ) = 𝑈 ) )
46 45 rspcev ( ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹𝐴 ) = 𝑈 ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑐 ) = 𝑈 )
47 44 46 sylan ( ( 𝜑 ∧ ( 𝐹𝐴 ) = 𝑈 ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑐 ) = 𝑈 )
48 8 simpld ( 𝜑 → ( 𝐹𝐴 ) ≤ 𝑈 )
49 fveq2 ( 𝑥 = 𝐴 → ( 𝐹𝑥 ) = ( 𝐹𝐴 ) )
50 49 eleq1d ( 𝑥 = 𝐴 → ( ( 𝐹𝑥 ) ∈ ℝ ↔ ( 𝐹𝐴 ) ∈ ℝ ) )
51 50 37 44 rspcdva ( 𝜑 → ( 𝐹𝐴 ) ∈ ℝ )
52 51 3 leloed ( 𝜑 → ( ( 𝐹𝐴 ) ≤ 𝑈 ↔ ( ( 𝐹𝐴 ) < 𝑈 ∨ ( 𝐹𝐴 ) = 𝑈 ) ) )
53 48 52 mpbid ( 𝜑 → ( ( 𝐹𝐴 ) < 𝑈 ∨ ( 𝐹𝐴 ) = 𝑈 ) )
54 42 47 53 mpjaodan ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑐 ) = 𝑈 )