| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ivth.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ivth.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
ivth.3 |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
| 4 |
|
ivth.4 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 5 |
|
ivth.5 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) |
| 6 |
|
ivth.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 7 |
|
ivth.8 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 8 |
|
ivthle.9 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≤ 𝑈 ∧ 𝑈 ≤ ( 𝐹 ‘ 𝐵 ) ) ) |
| 9 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → 𝐴 ∈ ℝ ) |
| 11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → 𝐵 ∈ ℝ ) |
| 12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → 𝑈 ∈ ℝ ) |
| 13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → 𝐴 < 𝐵 ) |
| 14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) |
| 15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 16 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) |
| 18 |
10 11 12 13 14 15 16 17
|
ivth |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 19 |
|
ssrexv |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) ) |
| 20 |
9 18 19
|
mpsyl |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 21 |
20
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) < 𝑈 ) ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 22 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 23 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 24 |
1 2 4
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 25 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 26 |
22 23 24 25
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 27 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑐 ) = 𝑈 ↔ 𝑈 = ( 𝐹 ‘ 𝑐 ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝑐 = 𝐵 → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 29 |
28
|
eqeq2d |
⊢ ( 𝑐 = 𝐵 → ( 𝑈 = ( 𝐹 ‘ 𝑐 ) ↔ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) ) |
| 30 |
27 29
|
bitrid |
⊢ ( 𝑐 = 𝐵 → ( ( 𝐹 ‘ 𝑐 ) = 𝑈 ↔ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) ) |
| 31 |
30
|
rspcev |
⊢ ( ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 32 |
26 31
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 33 |
32
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) < 𝑈 ) ∧ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 34 |
8
|
simprd |
⊢ ( 𝜑 → 𝑈 ≤ ( 𝐹 ‘ 𝐵 ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 36 |
35
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) ) |
| 37 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 38 |
36 37 26
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 39 |
3 38
|
leloed |
⊢ ( 𝜑 → ( 𝑈 ≤ ( 𝐹 ‘ 𝐵 ) ↔ ( 𝑈 < ( 𝐹 ‘ 𝐵 ) ∨ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 40 |
34 39
|
mpbid |
⊢ ( 𝜑 → ( 𝑈 < ( 𝐹 ‘ 𝐵 ) ∨ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) < 𝑈 ) → ( 𝑈 < ( 𝐹 ‘ 𝐵 ) ∨ 𝑈 = ( 𝐹 ‘ 𝐵 ) ) ) |
| 42 |
21 33 41
|
mpjaodan |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) < 𝑈 ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 43 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 44 |
22 23 24 43
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 45 |
|
fveqeq2 |
⊢ ( 𝑐 = 𝐴 → ( ( 𝐹 ‘ 𝑐 ) = 𝑈 ↔ ( 𝐹 ‘ 𝐴 ) = 𝑈 ) ) |
| 46 |
45
|
rspcev |
⊢ ( ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) = 𝑈 ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 47 |
44 46
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) = 𝑈 ) → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 48 |
8
|
simpld |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≤ 𝑈 ) |
| 49 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 50 |
49
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) ) |
| 51 |
50 37 44
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 52 |
51 3
|
leloed |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ≤ 𝑈 ↔ ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∨ ( 𝐹 ‘ 𝐴 ) = 𝑈 ) ) ) |
| 53 |
48 52
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∨ ( 𝐹 ‘ 𝐴 ) = 𝑈 ) ) |
| 54 |
42 47 53
|
mpjaodan |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |