Step |
Hyp |
Ref |
Expression |
1 |
|
ivth.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ivth.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ivth.3 |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
4 |
|
ivth.4 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
5 |
|
ivth.5 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) |
6 |
|
ivth.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
7 |
|
ivth.8 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
8 |
|
ivth.9 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) |
9 |
|
ivth.10 |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 } |
10 |
|
ivth.11 |
⊢ 𝐶 = sup ( 𝑆 , ℝ , < ) |
11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
12 |
9
|
ssrab3 |
⊢ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) |
13 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
14 |
1 2 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
15 |
12 14
|
sstrid |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
16 |
1 2 3 4 5 6 7 8 9
|
ivthlem1 |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) |
17 |
16
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
18 |
17
|
ne0d |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
19 |
16
|
simprd |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) |
20 |
|
brralrspcev |
⊢ ( ( 𝐵 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) |
21 |
2 19 20
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) |
22 |
15 18 21
|
suprcld |
⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ∈ ℝ ) |
23 |
10 22
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
24 |
15 18 21 17
|
suprubd |
⊢ ( 𝜑 → 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ) |
25 |
24 10
|
breqtrrdi |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
26 |
15 18 21
|
3jca |
⊢ ( 𝜑 → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ) |
27 |
|
suprleub |
⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) |
28 |
26 2 27
|
syl2anc |
⊢ ( 𝜑 → ( sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) |
29 |
19 28
|
mpbird |
⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ) |
30 |
10 29
|
eqbrtrid |
⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) |
31 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
32 |
1 2 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
33 |
23 25 30 32
|
mpbir3and |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
34 |
5 33
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → 𝐶 ∈ 𝐷 ) |
36 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐶 ) ) |
37 |
36
|
eleq1d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) ) |
38 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
39 |
37 38 33
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) |
40 |
|
difrp |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( ( 𝐹 ‘ 𝐶 ) < 𝑈 ↔ ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∈ ℝ+ ) ) |
41 |
39 3 40
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < 𝑈 ↔ ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∈ ℝ+ ) ) |
42 |
41
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∈ ℝ+ ) |
43 |
|
cncfi |
⊢ ( ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ 𝐶 ∈ 𝐷 ∧ ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) |
44 |
11 35 42 43
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) |
45 |
|
ssralv |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) ) |
46 |
5 45
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) ) |
47 |
46
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) ) |
48 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
49 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
50 |
|
rphalfcl |
⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 / 2 ) ∈ ℝ+ ) |
51 |
50
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝑧 / 2 ) ∈ ℝ+ ) |
52 |
51
|
rpred |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝑧 / 2 ) ∈ ℝ ) |
53 |
49 52
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 + ( 𝑧 / 2 ) ) ∈ ℝ ) |
54 |
48 53
|
ifcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ℝ ) |
55 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
56 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐴 ≤ 𝐶 ) |
57 |
8
|
simprd |
⊢ ( 𝜑 → 𝑈 < ( 𝐹 ‘ 𝐵 ) ) |
58 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) |
59 |
58
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) ) |
60 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
61 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
62 |
1 2 4
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
63 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
64 |
60 61 62 63
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
65 |
59 38 64
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
66 |
|
lttr |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝐶 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) ) |
67 |
39 3 65 66
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝐶 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) ) |
68 |
57 67
|
mpan2d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < 𝑈 → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) ) |
69 |
68
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) |
70 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) |
71 |
39
|
ltnrd |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ) |
72 |
|
fveq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) |
73 |
72
|
breq2d |
⊢ ( 𝐵 = 𝐶 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ↔ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
74 |
73
|
notbid |
⊢ ( 𝐵 = 𝐶 → ( ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ↔ ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
75 |
71 74
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐵 = 𝐶 → ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) ) |
76 |
75
|
necon2ad |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → 𝐵 ≠ 𝐶 ) ) |
77 |
76 30
|
jctild |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → ( 𝐶 ≤ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) ) |
78 |
23 2
|
ltlend |
⊢ ( 𝜑 → ( 𝐶 < 𝐵 ↔ ( 𝐶 ≤ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) ) |
79 |
77 78
|
sylibrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → 𝐶 < 𝐵 ) ) |
80 |
79
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → 𝐶 < 𝐵 ) ) |
81 |
70 80
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐶 < 𝐵 ) |
82 |
49 51
|
ltaddrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐶 < ( 𝐶 + ( 𝑧 / 2 ) ) ) |
83 |
|
breq2 |
⊢ ( 𝐵 = if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) → ( 𝐶 < 𝐵 ↔ 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) ) |
84 |
|
breq2 |
⊢ ( ( 𝐶 + ( 𝑧 / 2 ) ) = if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) → ( 𝐶 < ( 𝐶 + ( 𝑧 / 2 ) ) ↔ 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) ) |
85 |
83 84
|
ifboth |
⊢ ( ( 𝐶 < 𝐵 ∧ 𝐶 < ( 𝐶 + ( 𝑧 / 2 ) ) ) → 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) |
86 |
81 82 85
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) |
87 |
49 54 86
|
ltled |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐶 ≤ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) |
88 |
55 49 54 56 87
|
letrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐴 ≤ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) |
89 |
|
min1 |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 + ( 𝑧 / 2 ) ) ∈ ℝ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ 𝐵 ) |
90 |
48 53 89
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ 𝐵 ) |
91 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ℝ ∧ 𝐴 ≤ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∧ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ 𝐵 ) ) ) |
92 |
1 2 91
|
syl2anc |
⊢ ( 𝜑 → ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ℝ ∧ 𝐴 ≤ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∧ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ 𝐵 ) ) ) |
93 |
92
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ℝ ∧ 𝐴 ≤ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∧ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ 𝐵 ) ) ) |
94 |
54 88 90 93
|
mpbir3and |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
95 |
49 54 87
|
abssubge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( abs ‘ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) = ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) |
96 |
|
rpre |
⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ ) |
97 |
96
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝑧 ∈ ℝ ) |
98 |
49 97
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 + 𝑧 ) ∈ ℝ ) |
99 |
|
min2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 + ( 𝑧 / 2 ) ) ∈ ℝ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ ( 𝐶 + ( 𝑧 / 2 ) ) ) |
100 |
48 53 99
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ ( 𝐶 + ( 𝑧 / 2 ) ) ) |
101 |
|
rphalflt |
⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 / 2 ) < 𝑧 ) |
102 |
101
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝑧 / 2 ) < 𝑧 ) |
103 |
52 97 49 102
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 + ( 𝑧 / 2 ) ) < ( 𝐶 + 𝑧 ) ) |
104 |
54 53 98 100 103
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) < ( 𝐶 + 𝑧 ) ) |
105 |
54 49 97
|
ltsubadd2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) < 𝑧 ↔ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) < ( 𝐶 + 𝑧 ) ) ) |
106 |
104 105
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) < 𝑧 ) |
107 |
95 106
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( abs ‘ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) < 𝑧 ) |
108 |
|
fvoveq1 |
⊢ ( 𝑦 = if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) → ( abs ‘ ( 𝑦 − 𝐶 ) ) = ( abs ‘ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) ) |
109 |
108
|
breq1d |
⊢ ( 𝑦 = if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) → ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ↔ ( abs ‘ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) < 𝑧 ) ) |
110 |
|
breq2 |
⊢ ( 𝑦 = if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) → ( 𝐶 < 𝑦 ↔ 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) ) |
111 |
109 110
|
anbi12d |
⊢ ( 𝑦 = if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) → ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ↔ ( ( abs ‘ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) < 𝑧 ∧ 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) ) ) |
112 |
111
|
rspcev |
⊢ ( ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ( 𝐴 [,] 𝐵 ) ∧ ( ( abs ‘ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) < 𝑧 ∧ 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) ) → ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) |
113 |
94 107 86 112
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) |
114 |
|
r19.29 |
⊢ ( ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ∧ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) → ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) ) |
115 |
|
pm3.45 |
⊢ ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∧ 𝐶 < 𝑦 ) ) ) |
116 |
115
|
imp |
⊢ ( ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∧ 𝐶 < 𝑦 ) ) |
117 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝐶 < 𝑦 ) |
118 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
119 |
118
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) ) |
120 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝜑 ) |
121 |
120 38
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
122 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
123 |
119 121 122
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
124 |
120 39
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) |
125 |
120 3
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝑈 ∈ ℝ ) |
126 |
125 124
|
resubcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∈ ℝ ) |
127 |
123 124 126
|
absdifltd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ↔ ( ( ( 𝐹 ‘ 𝐶 ) − ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) ) ) |
128 |
|
ltle |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑦 ) < 𝑈 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
129 |
123 125 128
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( 𝐹 ‘ 𝑦 ) < 𝑈 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
130 |
124
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
131 |
125
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝑈 ∈ ℂ ) |
132 |
130 131
|
pncan3d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( 𝐹 ‘ 𝐶 ) + ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) = 𝑈 ) |
133 |
132
|
breq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ↔ ( 𝐹 ‘ 𝑦 ) < 𝑈 ) ) |
134 |
118
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
135 |
134 9
|
elrab2 |
⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
136 |
135
|
baib |
⊢ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑦 ∈ 𝑆 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
137 |
136
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝑦 ∈ 𝑆 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
138 |
129 133 137
|
3imtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → 𝑦 ∈ 𝑆 ) ) |
139 |
|
suprub |
⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ≤ sup ( 𝑆 , ℝ , < ) ) |
140 |
139 10
|
breqtrrdi |
⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ≤ 𝐶 ) |
141 |
140
|
ex |
⊢ ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) → ( 𝑦 ∈ 𝑆 → 𝑦 ≤ 𝐶 ) ) |
142 |
120 26 141
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝑦 ∈ 𝑆 → 𝑦 ≤ 𝐶 ) ) |
143 |
120 14
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
144 |
143 122
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝑦 ∈ ℝ ) |
145 |
120 23
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝐶 ∈ ℝ ) |
146 |
144 145
|
lenltd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝑦 ≤ 𝐶 ↔ ¬ 𝐶 < 𝑦 ) ) |
147 |
142 146
|
sylibd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝑦 ∈ 𝑆 → ¬ 𝐶 < 𝑦 ) ) |
148 |
138 147
|
syld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ¬ 𝐶 < 𝑦 ) ) |
149 |
148
|
adantld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( ( ( 𝐹 ‘ 𝐶 ) − ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) → ¬ 𝐶 < 𝑦 ) ) |
150 |
127 149
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) → ¬ 𝐶 < 𝑦 ) ) |
151 |
117 150
|
mt2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ¬ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) |
152 |
151
|
pm2.21d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
153 |
152
|
expr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐶 < 𝑦 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) ) |
154 |
153
|
impcomd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∧ 𝐶 < 𝑦 ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
155 |
116 154
|
syl5 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
156 |
155
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
157 |
114 156
|
syl5 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ∧ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
158 |
113 157
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
159 |
47 158
|
syld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
160 |
159
|
rexlimdva |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
161 |
44 160
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) |
162 |
161
|
pm2.01da |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) |