| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ivth.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ivth.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ivth.3 | ⊢ ( 𝜑  →  𝑈  ∈  ℝ ) | 
						
							| 4 |  | ivth.4 | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 5 |  | ivth.5 | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  𝐷 ) | 
						
							| 6 |  | ivth.7 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐷 –cn→ ℂ ) ) | 
						
							| 7 |  | ivth.8 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 8 |  | ivth.9 | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  <  𝑈  ∧  𝑈  <  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 9 |  | ivth.10 | ⊢ 𝑆  =  { 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝐹 ‘ 𝑥 )  ≤  𝑈 } | 
						
							| 10 |  | ivth.11 | ⊢ 𝐶  =  sup ( 𝑆 ,  ℝ ,   <  ) | 
						
							| 11 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  →  𝐹  ∈  ( 𝐷 –cn→ ℂ ) ) | 
						
							| 12 | 9 | ssrab3 | ⊢ 𝑆  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 13 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 14 | 1 2 13 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 15 | 12 14 | sstrid | ⊢ ( 𝜑  →  𝑆  ⊆  ℝ ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 | ivthlem1 | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑆  ∧  ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝐵 ) ) | 
						
							| 17 | 16 | simpld | ⊢ ( 𝜑  →  𝐴  ∈  𝑆 ) | 
						
							| 18 | 17 | ne0d | ⊢ ( 𝜑  →  𝑆  ≠  ∅ ) | 
						
							| 19 | 16 | simprd | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝐵 ) | 
						
							| 20 |  | brralrspcev | ⊢ ( ( 𝐵  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝐵 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 ) | 
						
							| 21 | 2 19 20 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 ) | 
						
							| 22 | 15 18 21 | suprcld | ⊢ ( 𝜑  →  sup ( 𝑆 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 23 | 10 22 | eqeltrid | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 24 | 15 18 21 17 | suprubd | ⊢ ( 𝜑  →  𝐴  ≤  sup ( 𝑆 ,  ℝ ,   <  ) ) | 
						
							| 25 | 24 10 | breqtrrdi | ⊢ ( 𝜑  →  𝐴  ≤  𝐶 ) | 
						
							| 26 | 15 18 21 | 3jca | ⊢ ( 𝜑  →  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 ) ) | 
						
							| 27 |  | suprleub | ⊢ ( ( ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 )  ∧  𝐵  ∈  ℝ )  →  ( sup ( 𝑆 ,  ℝ ,   <  )  ≤  𝐵  ↔  ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝐵 ) ) | 
						
							| 28 | 26 2 27 | syl2anc | ⊢ ( 𝜑  →  ( sup ( 𝑆 ,  ℝ ,   <  )  ≤  𝐵  ↔  ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝐵 ) ) | 
						
							| 29 | 19 28 | mpbird | ⊢ ( 𝜑  →  sup ( 𝑆 ,  ℝ ,   <  )  ≤  𝐵 ) | 
						
							| 30 | 10 29 | eqbrtrid | ⊢ ( 𝜑  →  𝐶  ≤  𝐵 ) | 
						
							| 31 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 32 | 1 2 31 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 33 | 23 25 30 32 | mpbir3and | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 34 | 5 33 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  𝐷 ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  →  𝐶  ∈  𝐷 ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑥  =  𝐶  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( 𝑥  =  𝐶  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ↔  ( 𝐹 ‘ 𝐶 )  ∈  ℝ ) ) | 
						
							| 38 | 7 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 39 | 37 38 33 | rspcdva | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 40 |  | difrp | ⊢ ( ( ( 𝐹 ‘ 𝐶 )  ∈  ℝ  ∧  𝑈  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝐶 )  <  𝑈  ↔  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) )  ∈  ℝ+ ) ) | 
						
							| 41 | 39 3 40 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 )  <  𝑈  ↔  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) )  ∈  ℝ+ ) ) | 
						
							| 42 | 41 | biimpa | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  →  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) )  ∈  ℝ+ ) | 
						
							| 43 |  | cncfi | ⊢ ( ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  𝐶  ∈  𝐷  ∧  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) )  ∈  ℝ+ )  →  ∃ 𝑧  ∈  ℝ+ ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) ) ) | 
						
							| 44 | 11 35 42 43 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  →  ∃ 𝑧  ∈  ℝ+ ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) ) ) | 
						
							| 45 |  | ssralv | ⊢ ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  →  ( ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  →  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) ) ) ) | 
						
							| 46 | 5 45 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  →  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) ) ) ) | 
						
							| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  →  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) ) ) ) | 
						
							| 48 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  𝐵  ∈  ℝ ) | 
						
							| 49 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  𝐶  ∈  ℝ ) | 
						
							| 50 |  | rphalfcl | ⊢ ( 𝑧  ∈  ℝ+  →  ( 𝑧  /  2 )  ∈  ℝ+ ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( 𝑧  /  2 )  ∈  ℝ+ ) | 
						
							| 52 | 51 | rpred | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( 𝑧  /  2 )  ∈  ℝ ) | 
						
							| 53 | 49 52 | readdcld | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( 𝐶  +  ( 𝑧  /  2 ) )  ∈  ℝ ) | 
						
							| 54 | 48 53 | ifcld | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ∈  ℝ ) | 
						
							| 55 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  𝐴  ∈  ℝ ) | 
						
							| 56 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  𝐴  ≤  𝐶 ) | 
						
							| 57 | 8 | simprd | ⊢ ( 𝜑  →  𝑈  <  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 58 |  | fveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 59 | 58 | eleq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ↔  ( 𝐹 ‘ 𝐵 )  ∈  ℝ ) ) | 
						
							| 60 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 61 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 62 | 1 2 4 | ltled | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 63 |  | ubicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 64 | 60 61 62 63 | syl3anc | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 65 | 59 38 64 | rspcdva | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 66 |  | lttr | ⊢ ( ( ( 𝐹 ‘ 𝐶 )  ∈  ℝ  ∧  𝑈  ∈  ℝ  ∧  ( 𝐹 ‘ 𝐵 )  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝐶 )  <  𝑈  ∧  𝑈  <  ( 𝐹 ‘ 𝐵 ) )  →  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 67 | 39 3 65 66 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ 𝐶 )  <  𝑈  ∧  𝑈  <  ( 𝐹 ‘ 𝐵 ) )  →  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 68 | 57 67 | mpan2d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 )  <  𝑈  →  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 69 | 68 | imp | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  →  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 71 | 39 | ltnrd | ⊢ ( 𝜑  →  ¬  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 72 |  | fveq2 | ⊢ ( 𝐵  =  𝐶  →  ( 𝐹 ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 73 | 72 | breq2d | ⊢ ( 𝐵  =  𝐶  →  ( ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 )  ↔  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 74 | 73 | notbid | ⊢ ( 𝐵  =  𝐶  →  ( ¬  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 )  ↔  ¬  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 75 | 71 74 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝐵  =  𝐶  →  ¬  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 76 | 75 | necon2ad | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 )  →  𝐵  ≠  𝐶 ) ) | 
						
							| 77 | 76 30 | jctild | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 )  →  ( 𝐶  ≤  𝐵  ∧  𝐵  ≠  𝐶 ) ) ) | 
						
							| 78 | 23 2 | ltlend | ⊢ ( 𝜑  →  ( 𝐶  <  𝐵  ↔  ( 𝐶  ≤  𝐵  ∧  𝐵  ≠  𝐶 ) ) ) | 
						
							| 79 | 77 78 | sylibrd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 )  →  𝐶  <  𝐵 ) ) | 
						
							| 80 | 79 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 )  →  𝐶  <  𝐵 ) ) | 
						
							| 81 | 70 80 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  𝐶  <  𝐵 ) | 
						
							| 82 | 49 51 | ltaddrpd | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  𝐶  <  ( 𝐶  +  ( 𝑧  /  2 ) ) ) | 
						
							| 83 |  | breq2 | ⊢ ( 𝐵  =  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  →  ( 𝐶  <  𝐵  ↔  𝐶  <  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) ) ) ) | 
						
							| 84 |  | breq2 | ⊢ ( ( 𝐶  +  ( 𝑧  /  2 ) )  =  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  →  ( 𝐶  <  ( 𝐶  +  ( 𝑧  /  2 ) )  ↔  𝐶  <  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) ) ) ) | 
						
							| 85 | 83 84 | ifboth | ⊢ ( ( 𝐶  <  𝐵  ∧  𝐶  <  ( 𝐶  +  ( 𝑧  /  2 ) ) )  →  𝐶  <  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) ) ) | 
						
							| 86 | 81 82 85 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  𝐶  <  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) ) ) | 
						
							| 87 | 49 54 86 | ltled | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  𝐶  ≤  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) ) ) | 
						
							| 88 | 55 49 54 56 87 | letrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  𝐴  ≤  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) ) ) | 
						
							| 89 |  | min1 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  ( 𝐶  +  ( 𝑧  /  2 ) )  ∈  ℝ )  →  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ≤  𝐵 ) | 
						
							| 90 | 48 53 89 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ≤  𝐵 ) | 
						
							| 91 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ∈  ℝ  ∧  𝐴  ≤  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ∧  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ≤  𝐵 ) ) ) | 
						
							| 92 | 1 2 91 | syl2anc | ⊢ ( 𝜑  →  ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ∈  ℝ  ∧  𝐴  ≤  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ∧  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ≤  𝐵 ) ) ) | 
						
							| 93 | 92 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ∈  ℝ  ∧  𝐴  ≤  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ∧  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ≤  𝐵 ) ) ) | 
						
							| 94 | 54 88 90 93 | mpbir3and | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 95 | 49 54 87 | abssubge0d | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( abs ‘ ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  −  𝐶 ) )  =  ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  −  𝐶 ) ) | 
						
							| 96 |  | rpre | ⊢ ( 𝑧  ∈  ℝ+  →  𝑧  ∈  ℝ ) | 
						
							| 97 | 96 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  𝑧  ∈  ℝ ) | 
						
							| 98 | 49 97 | readdcld | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( 𝐶  +  𝑧 )  ∈  ℝ ) | 
						
							| 99 |  | min2 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  ( 𝐶  +  ( 𝑧  /  2 ) )  ∈  ℝ )  →  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ) | 
						
							| 100 | 48 53 99 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ) | 
						
							| 101 |  | rphalflt | ⊢ ( 𝑧  ∈  ℝ+  →  ( 𝑧  /  2 )  <  𝑧 ) | 
						
							| 102 | 101 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( 𝑧  /  2 )  <  𝑧 ) | 
						
							| 103 | 52 97 49 102 | ltadd2dd | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( 𝐶  +  ( 𝑧  /  2 ) )  <  ( 𝐶  +  𝑧 ) ) | 
						
							| 104 | 54 53 98 100 103 | lelttrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  <  ( 𝐶  +  𝑧 ) ) | 
						
							| 105 | 54 49 97 | ltsubadd2d | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  −  𝐶 )  <  𝑧  ↔  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  <  ( 𝐶  +  𝑧 ) ) ) | 
						
							| 106 | 104 105 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  −  𝐶 )  <  𝑧 ) | 
						
							| 107 | 95 106 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( abs ‘ ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  −  𝐶 ) )  <  𝑧 ) | 
						
							| 108 |  | fvoveq1 | ⊢ ( 𝑦  =  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  →  ( abs ‘ ( 𝑦  −  𝐶 ) )  =  ( abs ‘ ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  −  𝐶 ) ) ) | 
						
							| 109 | 108 | breq1d | ⊢ ( 𝑦  =  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  →  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ↔  ( abs ‘ ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  −  𝐶 ) )  <  𝑧 ) ) | 
						
							| 110 |  | breq2 | ⊢ ( 𝑦  =  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  →  ( 𝐶  <  𝑦  ↔  𝐶  <  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) ) ) ) | 
						
							| 111 | 109 110 | anbi12d | ⊢ ( 𝑦  =  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  →  ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝐶  <  𝑦 )  ↔  ( ( abs ‘ ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  −  𝐶 ) )  <  𝑧  ∧  𝐶  <  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) ) ) ) ) | 
						
							| 112 | 111 | rspcev | ⊢ ( ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( ( abs ‘ ( if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) )  −  𝐶 ) )  <  𝑧  ∧  𝐶  <  if ( 𝐵  ≤  ( 𝐶  +  ( 𝑧  /  2 ) ) ,  𝐵 ,  ( 𝐶  +  ( 𝑧  /  2 ) ) ) ) )  →  ∃ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝐶  <  𝑦 ) ) | 
						
							| 113 | 94 107 86 112 | syl12anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ∃ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝐶  <  𝑦 ) ) | 
						
							| 114 |  | r19.29 | ⊢ ( ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  ∧  ∃ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝐶  <  𝑦 ) )  →  ∃ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  ∧  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝐶  <  𝑦 ) ) ) | 
						
							| 115 |  | pm3.45 | ⊢ ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  →  ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝐶  <  𝑦 )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) )  ∧  𝐶  <  𝑦 ) ) ) | 
						
							| 116 | 115 | imp | ⊢ ( ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  ∧  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝐶  <  𝑦 ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) )  ∧  𝐶  <  𝑦 ) ) | 
						
							| 117 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  𝐶  <  𝑦 ) | 
						
							| 118 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 119 | 118 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ↔  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) ) | 
						
							| 120 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  𝜑 ) | 
						
							| 121 | 120 38 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 122 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 123 | 119 121 122 | rspcdva | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 124 | 120 39 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( 𝐹 ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 125 | 120 3 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  𝑈  ∈  ℝ ) | 
						
							| 126 | 125 124 | resubcld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) )  ∈  ℝ ) | 
						
							| 127 | 123 124 126 | absdifltd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) )  ↔  ( ( ( 𝐹 ‘ 𝐶 )  −  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝐹 ‘ 𝑦 )  ∧  ( 𝐹 ‘ 𝑦 )  <  ( ( 𝐹 ‘ 𝐶 )  +  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) ) ) ) ) | 
						
							| 128 |  | ltle | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  𝑈  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑦 )  <  𝑈  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑈 ) ) | 
						
							| 129 | 123 125 128 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( ( 𝐹 ‘ 𝑦 )  <  𝑈  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑈 ) ) | 
						
							| 130 | 124 | recnd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( 𝐹 ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 131 | 125 | recnd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  𝑈  ∈  ℂ ) | 
						
							| 132 | 130 131 | pncan3d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( ( 𝐹 ‘ 𝐶 )  +  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  =  𝑈 ) | 
						
							| 133 | 132 | breq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( ( 𝐹 ‘ 𝑦 )  <  ( ( 𝐹 ‘ 𝐶 )  +  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  ↔  ( 𝐹 ‘ 𝑦 )  <  𝑈 ) ) | 
						
							| 134 | 118 | breq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  ≤  𝑈  ↔  ( 𝐹 ‘ 𝑦 )  ≤  𝑈 ) ) | 
						
							| 135 | 134 9 | elrab2 | ⊢ ( 𝑦  ∈  𝑆  ↔  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝐹 ‘ 𝑦 )  ≤  𝑈 ) ) | 
						
							| 136 | 135 | baib | ⊢ ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  →  ( 𝑦  ∈  𝑆  ↔  ( 𝐹 ‘ 𝑦 )  ≤  𝑈 ) ) | 
						
							| 137 | 136 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( 𝑦  ∈  𝑆  ↔  ( 𝐹 ‘ 𝑦 )  ≤  𝑈 ) ) | 
						
							| 138 | 129 133 137 | 3imtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( ( 𝐹 ‘ 𝑦 )  <  ( ( 𝐹 ‘ 𝐶 )  +  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  →  𝑦  ∈  𝑆 ) ) | 
						
							| 139 |  | suprub | ⊢ ( ( ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ≤  sup ( 𝑆 ,  ℝ ,   <  ) ) | 
						
							| 140 | 139 10 | breqtrrdi | ⊢ ( ( ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ≤  𝐶 ) | 
						
							| 141 | 140 | ex | ⊢ ( ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 )  →  ( 𝑦  ∈  𝑆  →  𝑦  ≤  𝐶 ) ) | 
						
							| 142 | 120 26 141 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( 𝑦  ∈  𝑆  →  𝑦  ≤  𝐶 ) ) | 
						
							| 143 | 120 14 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 144 | 143 122 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 145 | 120 23 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 146 | 144 145 | lenltd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( 𝑦  ≤  𝐶  ↔  ¬  𝐶  <  𝑦 ) ) | 
						
							| 147 | 142 146 | sylibd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( 𝑦  ∈  𝑆  →  ¬  𝐶  <  𝑦 ) ) | 
						
							| 148 | 138 147 | syld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( ( 𝐹 ‘ 𝑦 )  <  ( ( 𝐹 ‘ 𝐶 )  +  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  →  ¬  𝐶  <  𝑦 ) ) | 
						
							| 149 | 148 | adantld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( ( ( ( 𝐹 ‘ 𝐶 )  −  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝐹 ‘ 𝑦 )  ∧  ( 𝐹 ‘ 𝑦 )  <  ( ( 𝐹 ‘ 𝐶 )  +  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) ) )  →  ¬  𝐶  <  𝑦 ) ) | 
						
							| 150 | 127 149 | sylbid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) )  →  ¬  𝐶  <  𝑦 ) ) | 
						
							| 151 | 117 150 | mt2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ¬  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 152 | 151 | pm2.21d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  <  𝑦 ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) )  →  ¬  ( 𝐹 ‘ 𝐶 )  <  𝑈 ) ) | 
						
							| 153 | 152 | expr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐶  <  𝑦  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) )  →  ¬  ( 𝐹 ‘ 𝐶 )  <  𝑈 ) ) ) | 
						
							| 154 | 153 | impcomd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) )  ∧  𝐶  <  𝑦 )  →  ¬  ( 𝐹 ‘ 𝐶 )  <  𝑈 ) ) | 
						
							| 155 | 116 154 | syl5 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  ∧  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝐶  <  𝑦 ) )  →  ¬  ( 𝐹 ‘ 𝐶 )  <  𝑈 ) ) | 
						
							| 156 | 155 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( ∃ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  ∧  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝐶  <  𝑦 ) )  →  ¬  ( 𝐹 ‘ 𝐶 )  <  𝑈 ) ) | 
						
							| 157 | 114 156 | syl5 | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  ∧  ∃ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝐶  <  𝑦 ) )  →  ¬  ( 𝐹 ‘ 𝐶 )  <  𝑈 ) ) | 
						
							| 158 | 113 157 | mpan2d | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  →  ¬  ( 𝐹 ‘ 𝐶 )  <  𝑈 ) ) | 
						
							| 159 | 47 158 | syld | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  ∧  𝑧  ∈  ℝ+ )  →  ( ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  →  ¬  ( 𝐹 ‘ 𝐶 )  <  𝑈 ) ) | 
						
							| 160 | 159 | rexlimdva | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  →  ( ∃ 𝑧  ∈  ℝ+ ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( 𝑈  −  ( 𝐹 ‘ 𝐶 ) ) )  →  ¬  ( 𝐹 ‘ 𝐶 )  <  𝑈 ) ) | 
						
							| 161 | 44 160 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝐶 )  <  𝑈 )  →  ¬  ( 𝐹 ‘ 𝐶 )  <  𝑈 ) | 
						
							| 162 | 161 | pm2.01da | ⊢ ( 𝜑  →  ¬  ( 𝐹 ‘ 𝐶 )  <  𝑈 ) |