Step |
Hyp |
Ref |
Expression |
1 |
|
ivth.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ivth.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ivth.3 |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
4 |
|
ivth.4 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
5 |
|
ivth.5 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) |
6 |
|
ivth.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
7 |
|
ivth.8 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
8 |
|
ivth.9 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) |
9 |
|
ivth.10 |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 } |
10 |
|
ivth.11 |
⊢ 𝐶 = sup ( 𝑆 , ℝ , < ) |
11 |
9
|
ssrab3 |
⊢ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) |
12 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
13 |
1 2 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
14 |
11 13
|
sstrid |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
15 |
1 2 3 4 5 6 7 8 9
|
ivthlem1 |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
17 |
16
|
ne0d |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
18 |
15
|
simprd |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) |
19 |
|
brralrspcev |
⊢ ( ( 𝐵 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) |
20 |
2 18 19
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) |
21 |
14 17 20
|
suprcld |
⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ∈ ℝ ) |
22 |
10 21
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
23 |
8
|
simpld |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) < 𝑈 ) |
24 |
1 2 3 4 5 6 7 8 9 10
|
ivthlem2 |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) |
25 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
26 |
14 17 20 16
|
suprubd |
⊢ ( 𝜑 → 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ) |
27 |
26 10
|
breqtrrdi |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
28 |
14 17 20
|
3jca |
⊢ ( 𝜑 → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ) |
29 |
|
suprleub |
⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) |
30 |
28 2 29
|
syl2anc |
⊢ ( 𝜑 → ( sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) |
31 |
18 30
|
mpbird |
⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ) |
32 |
10 31
|
eqbrtrid |
⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) |
33 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
34 |
1 2 33
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
35 |
22 27 32 34
|
mpbir3and |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
36 |
5 35
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) → 𝐶 ∈ 𝐷 ) |
38 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐶 ) ) |
39 |
38
|
eleq1d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) ) |
40 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
41 |
39 40 35
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) |
42 |
|
difrp |
⊢ ( ( 𝑈 ∈ ℝ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) → ( 𝑈 < ( 𝐹 ‘ 𝐶 ) ↔ ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∈ ℝ+ ) ) |
43 |
3 41 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 < ( 𝐹 ‘ 𝐶 ) ↔ ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∈ ℝ+ ) ) |
44 |
43
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) → ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∈ ℝ+ ) |
45 |
|
cncfi |
⊢ ( ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ 𝐶 ∈ 𝐷 ∧ ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) |
46 |
25 37 44 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) |
47 |
|
ssralv |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) ) |
48 |
5 47
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) ) |
50 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
51 |
|
ltsubrp |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 − 𝑧 ) < 𝐶 ) |
52 |
50 51
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 − 𝑧 ) < 𝐶 ) |
53 |
52 10
|
breqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 − 𝑧 ) < sup ( 𝑆 , ℝ , < ) ) |
54 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ) |
55 |
|
rpre |
⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → 𝑧 ∈ ℝ ) |
57 |
50 56
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 − 𝑧 ) ∈ ℝ ) |
58 |
|
suprlub |
⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ ( 𝐶 − 𝑧 ) ∈ ℝ ) → ( ( 𝐶 − 𝑧 ) < sup ( 𝑆 , ℝ , < ) ↔ ∃ 𝑦 ∈ 𝑆 ( 𝐶 − 𝑧 ) < 𝑦 ) ) |
59 |
54 57 58
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝐶 − 𝑧 ) < sup ( 𝑆 , ℝ , < ) ↔ ∃ 𝑦 ∈ 𝑆 ( 𝐶 − 𝑧 ) < 𝑦 ) ) |
60 |
53 59
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝑆 ( 𝐶 − 𝑧 ) < 𝑦 ) |
61 |
11
|
sseli |
⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
62 |
61
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
63 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝜑 ) |
64 |
63 13
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
65 |
64 62
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝑦 ∈ ℝ ) |
66 |
63 22
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝐶 ∈ ℝ ) |
67 |
63 28
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ) |
68 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝑦 ∈ 𝑆 ) |
69 |
|
suprub |
⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ≤ sup ( 𝑆 , ℝ , < ) ) |
70 |
67 68 69
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝑦 ≤ sup ( 𝑆 , ℝ , < ) ) |
71 |
70 10
|
breqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝑦 ≤ 𝐶 ) |
72 |
65 66 71
|
abssuble0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( abs ‘ ( 𝑦 − 𝐶 ) ) = ( 𝐶 − 𝑦 ) ) |
73 |
56
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → 𝑧 ∈ ℝ ) |
74 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( 𝐶 − 𝑧 ) < 𝑦 ) |
75 |
66 73 65 74
|
ltsub23d |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( 𝐶 − 𝑦 ) < 𝑧 ) |
76 |
72 75
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ) |
77 |
62 76 68
|
jca32 |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) ) |
78 |
77
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝑦 ∈ 𝑆 ∧ ( 𝐶 − 𝑧 ) < 𝑦 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) ) ) |
79 |
78
|
reximdv2 |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ 𝑆 ( 𝐶 − 𝑧 ) < 𝑦 → ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) ) |
80 |
60 79
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) |
81 |
|
r19.29 |
⊢ ( ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ∧ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) → ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) ) |
82 |
|
pm3.45 |
⊢ ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∧ 𝑦 ∈ 𝑆 ) ) ) |
83 |
82
|
imp |
⊢ ( ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∧ 𝑦 ∈ 𝑆 ) ) |
84 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
85 |
84
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) ) |
86 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
87 |
61
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
88 |
85 86 87
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
89 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) |
90 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → 𝑈 ∈ ℝ ) |
91 |
89 90
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∈ ℝ ) |
92 |
88 89 91
|
absdifltd |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ↔ ( ( ( 𝐹 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) < ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) ) ) |
93 |
89
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
94 |
90
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → 𝑈 ∈ ℂ ) |
95 |
93 94
|
nncand |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) = 𝑈 ) |
96 |
95
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) < ( 𝐹 ‘ 𝑦 ) ↔ 𝑈 < ( 𝐹 ‘ 𝑦 ) ) ) |
97 |
84
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
98 |
97 9
|
elrab2 |
⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
99 |
98
|
simprbi |
⊢ ( 𝑦 ∈ 𝑆 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) |
100 |
99
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) |
101 |
88 90 100
|
lensymd |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝑦 ) ) |
102 |
101
|
pm2.21d |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑈 < ( 𝐹 ‘ 𝑦 ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
103 |
96 102
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) < ( 𝐹 ‘ 𝑦 ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
104 |
103
|
adantrd |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( ( 𝐹 ‘ 𝐶 ) − ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) < ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
105 |
92 104
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑆 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
106 |
105
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝑦 ∈ 𝑆 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) ) |
107 |
106
|
impcomd |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∧ 𝑦 ∈ 𝑆 ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
108 |
107
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ∧ 𝑦 ∈ 𝑆 ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
109 |
83 108
|
syl5 |
⊢ ( ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
110 |
109
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
111 |
81 110
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) ∧ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝑦 ∈ 𝑆 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
112 |
80 111
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
113 |
49 112
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
114 |
113
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( ( 𝐹 ‘ 𝐶 ) − 𝑈 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) |
115 |
46 114
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) |
116 |
115
|
pm2.01da |
⊢ ( 𝜑 → ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) |
117 |
41 3
|
lttri3d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) = 𝑈 ↔ ( ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ∧ ¬ 𝑈 < ( 𝐹 ‘ 𝐶 ) ) ) ) |
118 |
24 116 117
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) = 𝑈 ) |
119 |
23 118
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) ) |
120 |
41
|
ltnrd |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ) |
121 |
|
fveq2 |
⊢ ( 𝐶 = 𝐴 → ( 𝐹 ‘ 𝐶 ) = ( 𝐹 ‘ 𝐴 ) ) |
122 |
121
|
breq1d |
⊢ ( 𝐶 = 𝐴 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ↔ ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
123 |
122
|
notbid |
⊢ ( 𝐶 = 𝐴 → ( ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ↔ ¬ ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
124 |
120 123
|
syl5ibcom |
⊢ ( 𝜑 → ( 𝐶 = 𝐴 → ¬ ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
125 |
124
|
necon2ad |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) → 𝐶 ≠ 𝐴 ) ) |
126 |
125 27
|
jctild |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) → ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) ) |
127 |
1 22
|
ltlend |
⊢ ( 𝜑 → ( 𝐴 < 𝐶 ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) ) |
128 |
126 127
|
sylibrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < ( 𝐹 ‘ 𝐶 ) → 𝐴 < 𝐶 ) ) |
129 |
119 128
|
mpd |
⊢ ( 𝜑 → 𝐴 < 𝐶 ) |
130 |
8
|
simprd |
⊢ ( 𝜑 → 𝑈 < ( 𝐹 ‘ 𝐵 ) ) |
131 |
118 130
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) |
132 |
|
fveq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) |
133 |
132
|
breq2d |
⊢ ( 𝐵 = 𝐶 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ↔ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
134 |
133
|
notbid |
⊢ ( 𝐵 = 𝐶 → ( ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ↔ ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
135 |
120 134
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐵 = 𝐶 → ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) ) |
136 |
135
|
necon2ad |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → 𝐵 ≠ 𝐶 ) ) |
137 |
136 32
|
jctild |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → ( 𝐶 ≤ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) ) |
138 |
22 2
|
ltlend |
⊢ ( 𝜑 → ( 𝐶 < 𝐵 ↔ ( 𝐶 ≤ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) ) |
139 |
137 138
|
sylibrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → 𝐶 < 𝐵 ) ) |
140 |
131 139
|
mpd |
⊢ ( 𝜑 → 𝐶 < 𝐵 ) |
141 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
142 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
143 |
|
elioo2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
144 |
141 142 143
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
145 |
22 129 140 144
|
mpbir3and |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
146 |
145 118
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( 𝐹 ‘ 𝐶 ) = 𝑈 ) ) |