| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ivth.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ivth.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ivth.3 | ⊢ ( 𝜑  →  𝑈  ∈  ℝ ) | 
						
							| 4 |  | ivth.4 | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 5 |  | ivth.5 | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  𝐷 ) | 
						
							| 6 |  | ivth.7 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐷 –cn→ ℂ ) ) | 
						
							| 7 |  | ivth.8 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 8 |  | ivth.9 | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  <  𝑈  ∧  𝑈  <  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 9 |  | ivth.10 | ⊢ 𝑆  =  { 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∣  ( 𝐹 ‘ 𝑥 )  ≤  𝑈 } | 
						
							| 10 |  | ivth.11 | ⊢ 𝐶  =  sup ( 𝑆 ,  ℝ ,   <  ) | 
						
							| 11 | 9 | ssrab3 | ⊢ 𝑆  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 12 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 13 | 1 2 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 14 | 11 13 | sstrid | ⊢ ( 𝜑  →  𝑆  ⊆  ℝ ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 | ivthlem1 | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑆  ∧  ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝐵 ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( 𝜑  →  𝐴  ∈  𝑆 ) | 
						
							| 17 | 16 | ne0d | ⊢ ( 𝜑  →  𝑆  ≠  ∅ ) | 
						
							| 18 | 15 | simprd | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝐵 ) | 
						
							| 19 |  | brralrspcev | ⊢ ( ( 𝐵  ∈  ℝ  ∧  ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝐵 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 ) | 
						
							| 20 | 2 18 19 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 ) | 
						
							| 21 | 14 17 20 | suprcld | ⊢ ( 𝜑  →  sup ( 𝑆 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 22 | 10 21 | eqeltrid | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 23 | 8 | simpld | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  <  𝑈 ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 10 | ivthlem2 | ⊢ ( 𝜑  →  ¬  ( 𝐹 ‘ 𝐶 )  <  𝑈 ) | 
						
							| 25 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  →  𝐹  ∈  ( 𝐷 –cn→ ℂ ) ) | 
						
							| 26 | 14 17 20 16 | suprubd | ⊢ ( 𝜑  →  𝐴  ≤  sup ( 𝑆 ,  ℝ ,   <  ) ) | 
						
							| 27 | 26 10 | breqtrrdi | ⊢ ( 𝜑  →  𝐴  ≤  𝐶 ) | 
						
							| 28 | 14 17 20 | 3jca | ⊢ ( 𝜑  →  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 ) ) | 
						
							| 29 |  | suprleub | ⊢ ( ( ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 )  ∧  𝐵  ∈  ℝ )  →  ( sup ( 𝑆 ,  ℝ ,   <  )  ≤  𝐵  ↔  ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝐵 ) ) | 
						
							| 30 | 28 2 29 | syl2anc | ⊢ ( 𝜑  →  ( sup ( 𝑆 ,  ℝ ,   <  )  ≤  𝐵  ↔  ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝐵 ) ) | 
						
							| 31 | 18 30 | mpbird | ⊢ ( 𝜑  →  sup ( 𝑆 ,  ℝ ,   <  )  ≤  𝐵 ) | 
						
							| 32 | 10 31 | eqbrtrid | ⊢ ( 𝜑  →  𝐶  ≤  𝐵 ) | 
						
							| 33 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 34 | 1 2 33 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 35 | 22 27 32 34 | mpbir3and | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 36 | 5 35 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  𝐷 ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  →  𝐶  ∈  𝐷 ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑥  =  𝐶  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 39 | 38 | eleq1d | ⊢ ( 𝑥  =  𝐶  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ↔  ( 𝐹 ‘ 𝐶 )  ∈  ℝ ) ) | 
						
							| 40 | 7 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 41 | 39 40 35 | rspcdva | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 42 |  | difrp | ⊢ ( ( 𝑈  ∈  ℝ  ∧  ( 𝐹 ‘ 𝐶 )  ∈  ℝ )  →  ( 𝑈  <  ( 𝐹 ‘ 𝐶 )  ↔  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 )  ∈  ℝ+ ) ) | 
						
							| 43 | 3 41 42 | syl2anc | ⊢ ( 𝜑  →  ( 𝑈  <  ( 𝐹 ‘ 𝐶 )  ↔  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 )  ∈  ℝ+ ) ) | 
						
							| 44 | 43 | biimpa | ⊢ ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  →  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 )  ∈  ℝ+ ) | 
						
							| 45 |  | cncfi | ⊢ ( ( 𝐹  ∈  ( 𝐷 –cn→ ℂ )  ∧  𝐶  ∈  𝐷  ∧  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 )  ∈  ℝ+ )  →  ∃ 𝑧  ∈  ℝ+ ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) ) ) | 
						
							| 46 | 25 37 44 45 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  →  ∃ 𝑧  ∈  ℝ+ ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) ) ) | 
						
							| 47 |  | ssralv | ⊢ ( ( 𝐴 [,] 𝐵 )  ⊆  𝐷  →  ( ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  →  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) ) ) ) | 
						
							| 48 | 5 47 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  →  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) ) ) ) | 
						
							| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  →  ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) ) ) ) | 
						
							| 50 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  𝐶  ∈  ℝ ) | 
						
							| 51 |  | ltsubrp | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝑧  ∈  ℝ+ )  →  ( 𝐶  −  𝑧 )  <  𝐶 ) | 
						
							| 52 | 50 51 | sylancom | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( 𝐶  −  𝑧 )  <  𝐶 ) | 
						
							| 53 | 52 10 | breqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( 𝐶  −  𝑧 )  <  sup ( 𝑆 ,  ℝ ,   <  ) ) | 
						
							| 54 | 28 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 ) ) | 
						
							| 55 |  | rpre | ⊢ ( 𝑧  ∈  ℝ+  →  𝑧  ∈  ℝ ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  𝑧  ∈  ℝ ) | 
						
							| 57 | 50 56 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( 𝐶  −  𝑧 )  ∈  ℝ ) | 
						
							| 58 |  | suprlub | ⊢ ( ( ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 )  ∧  ( 𝐶  −  𝑧 )  ∈  ℝ )  →  ( ( 𝐶  −  𝑧 )  <  sup ( 𝑆 ,  ℝ ,   <  )  ↔  ∃ 𝑦  ∈  𝑆 ( 𝐶  −  𝑧 )  <  𝑦 ) ) | 
						
							| 59 | 54 57 58 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( ( 𝐶  −  𝑧 )  <  sup ( 𝑆 ,  ℝ ,   <  )  ↔  ∃ 𝑦  ∈  𝑆 ( 𝐶  −  𝑧 )  <  𝑦 ) ) | 
						
							| 60 | 53 59 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ∃ 𝑦  ∈  𝑆 ( 𝐶  −  𝑧 )  <  𝑦 ) | 
						
							| 61 | 11 | sseli | ⊢ ( 𝑦  ∈  𝑆  →  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 62 | 61 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 63 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  𝜑 ) | 
						
							| 64 | 63 13 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 65 | 64 62 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 66 | 63 22 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 67 | 63 28 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 ) ) | 
						
							| 68 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  𝑦  ∈  𝑆 ) | 
						
							| 69 |  | suprub | ⊢ ( ( ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑥 )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ≤  sup ( 𝑆 ,  ℝ ,   <  ) ) | 
						
							| 70 | 67 68 69 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  𝑦  ≤  sup ( 𝑆 ,  ℝ ,   <  ) ) | 
						
							| 71 | 70 10 | breqtrrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  𝑦  ≤  𝐶 ) | 
						
							| 72 | 65 66 71 | abssuble0d | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  ( abs ‘ ( 𝑦  −  𝐶 ) )  =  ( 𝐶  −  𝑦 ) ) | 
						
							| 73 | 56 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  𝑧  ∈  ℝ ) | 
						
							| 74 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  ( 𝐶  −  𝑧 )  <  𝑦 ) | 
						
							| 75 | 66 73 65 74 | ltsub23d | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  ( 𝐶  −  𝑦 )  <  𝑧 ) | 
						
							| 76 | 72 75 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧 ) | 
						
							| 77 | 62 76 68 | jca32 | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 ) )  →  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝑦  ∈  𝑆 ) ) ) | 
						
							| 78 | 77 | ex | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( ( 𝑦  ∈  𝑆  ∧  ( 𝐶  −  𝑧 )  <  𝑦 )  →  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝑦  ∈  𝑆 ) ) ) ) | 
						
							| 79 | 78 | reximdv2 | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( ∃ 𝑦  ∈  𝑆 ( 𝐶  −  𝑧 )  <  𝑦  →  ∃ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝑦  ∈  𝑆 ) ) ) | 
						
							| 80 | 60 79 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ∃ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝑦  ∈  𝑆 ) ) | 
						
							| 81 |  | r19.29 | ⊢ ( ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  ∧  ∃ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝑦  ∈  𝑆 ) )  →  ∃ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  ∧  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝑦  ∈  𝑆 ) ) ) | 
						
							| 82 |  | pm3.45 | ⊢ ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  →  ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝑦  ∈  𝑆 )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 )  ∧  𝑦  ∈  𝑆 ) ) ) | 
						
							| 83 | 82 | imp | ⊢ ( ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  ∧  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝑦  ∈  𝑆 ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 )  ∧  𝑦  ∈  𝑆 ) ) | 
						
							| 84 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 85 | 84 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ↔  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) ) | 
						
							| 86 | 40 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 87 | 61 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 88 | 85 86 87 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 89 | 41 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝐹 ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 90 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  𝑈  ∈  ℝ ) | 
						
							| 91 | 89 90 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 )  ∈  ℝ ) | 
						
							| 92 | 88 89 91 | absdifltd | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 )  ↔  ( ( ( 𝐹 ‘ 𝐶 )  −  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  <  ( 𝐹 ‘ 𝑦 )  ∧  ( 𝐹 ‘ 𝑦 )  <  ( ( 𝐹 ‘ 𝐶 )  +  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) ) ) ) ) | 
						
							| 93 | 89 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝐹 ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 94 | 90 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  𝑈  ∈  ℂ ) | 
						
							| 95 | 93 94 | nncand | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ( ( 𝐹 ‘ 𝐶 )  −  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  =  𝑈 ) | 
						
							| 96 | 95 | breq1d | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ( ( ( 𝐹 ‘ 𝐶 )  −  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  <  ( 𝐹 ‘ 𝑦 )  ↔  𝑈  <  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 97 | 84 | breq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  ≤  𝑈  ↔  ( 𝐹 ‘ 𝑦 )  ≤  𝑈 ) ) | 
						
							| 98 | 97 9 | elrab2 | ⊢ ( 𝑦  ∈  𝑆  ↔  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ∧  ( 𝐹 ‘ 𝑦 )  ≤  𝑈 ) ) | 
						
							| 99 | 98 | simprbi | ⊢ ( 𝑦  ∈  𝑆  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑈 ) | 
						
							| 100 | 99 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑈 ) | 
						
							| 101 | 88 90 100 | lensymd | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 102 | 101 | pm2.21d | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑈  <  ( 𝐹 ‘ 𝑦 )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 103 | 96 102 | sylbid | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ( ( ( 𝐹 ‘ 𝐶 )  −  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  <  ( 𝐹 ‘ 𝑦 )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 104 | 103 | adantrd | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ( ( ( ( 𝐹 ‘ 𝐶 )  −  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  <  ( 𝐹 ‘ 𝑦 )  ∧  ( 𝐹 ‘ 𝑦 )  <  ( ( 𝐹 ‘ 𝐶 )  +  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) ) )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 105 | 92 104 | sylbid | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  ( 𝑧  ∈  ℝ+  ∧  𝑦  ∈  𝑆 ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 106 | 105 | expr | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( 𝑦  ∈  𝑆  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) ) | 
						
							| 107 | 106 | impcomd | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 )  ∧  𝑦  ∈  𝑆 )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 )  ∧  𝑦  ∈  𝑆 )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 109 | 83 108 | syl5 | ⊢ ( ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  ∧  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝑦  ∈  𝑆 ) )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 110 | 109 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( ∃ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  ∧  ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝑦  ∈  𝑆 ) )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 111 | 81 110 | syl5 | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  ∧  ∃ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  ∧  𝑦  ∈  𝑆 ) )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 112 | 80 111 | mpan2d | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 113 | 49 112 | syld | ⊢ ( ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  ∧  𝑧  ∈  ℝ+ )  →  ( ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 114 | 113 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  →  ( ∃ 𝑧  ∈  ℝ+ ∀ 𝑦  ∈  𝐷 ( ( abs ‘ ( 𝑦  −  𝐶 ) )  <  𝑧  →  ( abs ‘ ( ( 𝐹 ‘ 𝑦 )  −  ( 𝐹 ‘ 𝐶 ) ) )  <  ( ( 𝐹 ‘ 𝐶 )  −  𝑈 ) )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 115 | 46 114 | mpd | ⊢ ( ( 𝜑  ∧  𝑈  <  ( 𝐹 ‘ 𝐶 ) )  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 116 | 115 | pm2.01da | ⊢ ( 𝜑  →  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 117 | 41 3 | lttri3d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 )  =  𝑈  ↔  ( ¬  ( 𝐹 ‘ 𝐶 )  <  𝑈  ∧  ¬  𝑈  <  ( 𝐹 ‘ 𝐶 ) ) ) ) | 
						
							| 118 | 24 116 117 | mpbir2and | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐶 )  =  𝑈 ) | 
						
							| 119 | 23 118 | breqtrrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  <  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 120 | 41 | ltnrd | ⊢ ( 𝜑  →  ¬  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 121 |  | fveq2 | ⊢ ( 𝐶  =  𝐴  →  ( 𝐹 ‘ 𝐶 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 122 | 121 | breq1d | ⊢ ( 𝐶  =  𝐴  →  ( ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐶 )  ↔  ( 𝐹 ‘ 𝐴 )  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 123 | 122 | notbid | ⊢ ( 𝐶  =  𝐴  →  ( ¬  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐶 )  ↔  ¬  ( 𝐹 ‘ 𝐴 )  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 124 | 120 123 | syl5ibcom | ⊢ ( 𝜑  →  ( 𝐶  =  𝐴  →  ¬  ( 𝐹 ‘ 𝐴 )  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 125 | 124 | necon2ad | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  <  ( 𝐹 ‘ 𝐶 )  →  𝐶  ≠  𝐴 ) ) | 
						
							| 126 | 125 27 | jctild | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  <  ( 𝐹 ‘ 𝐶 )  →  ( 𝐴  ≤  𝐶  ∧  𝐶  ≠  𝐴 ) ) ) | 
						
							| 127 | 1 22 | ltlend | ⊢ ( 𝜑  →  ( 𝐴  <  𝐶  ↔  ( 𝐴  ≤  𝐶  ∧  𝐶  ≠  𝐴 ) ) ) | 
						
							| 128 | 126 127 | sylibrd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐴 )  <  ( 𝐹 ‘ 𝐶 )  →  𝐴  <  𝐶 ) ) | 
						
							| 129 | 119 128 | mpd | ⊢ ( 𝜑  →  𝐴  <  𝐶 ) | 
						
							| 130 | 8 | simprd | ⊢ ( 𝜑  →  𝑈  <  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 131 | 118 130 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 132 |  | fveq2 | ⊢ ( 𝐵  =  𝐶  →  ( 𝐹 ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 133 | 132 | breq2d | ⊢ ( 𝐵  =  𝐶  →  ( ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 )  ↔  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 134 | 133 | notbid | ⊢ ( 𝐵  =  𝐶  →  ( ¬  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 )  ↔  ¬  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 135 | 120 134 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝐵  =  𝐶  →  ¬  ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 136 | 135 | necon2ad | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 )  →  𝐵  ≠  𝐶 ) ) | 
						
							| 137 | 136 32 | jctild | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 )  →  ( 𝐶  ≤  𝐵  ∧  𝐵  ≠  𝐶 ) ) ) | 
						
							| 138 | 22 2 | ltlend | ⊢ ( 𝜑  →  ( 𝐶  <  𝐵  ↔  ( 𝐶  ≤  𝐵  ∧  𝐵  ≠  𝐶 ) ) ) | 
						
							| 139 | 137 138 | sylibrd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 )  <  ( 𝐹 ‘ 𝐵 )  →  𝐶  <  𝐵 ) ) | 
						
							| 140 | 131 139 | mpd | ⊢ ( 𝜑  →  𝐶  <  𝐵 ) | 
						
							| 141 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 142 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 143 |  | elioo2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐶  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) ) ) | 
						
							| 144 | 141 142 143 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) ) ) | 
						
							| 145 | 22 129 140 144 | mpbir3and | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 146 | 145 118 | jca | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 (,) 𝐵 )  ∧  ( 𝐹 ‘ 𝐶 )  =  𝑈 ) ) |