Metamath Proof Explorer


Theorem ixi

Description: _i times itself is minus 1. (Contributed by NM, 6-May-1999) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion ixi ( i · i ) = - 1

Proof

Step Hyp Ref Expression
1 df-neg - 1 = ( 0 − 1 )
2 ax-i2m1 ( ( i · i ) + 1 ) = 0
3 0cn 0 ∈ ℂ
4 ax-1cn 1 ∈ ℂ
5 ax-icn i ∈ ℂ
6 5 5 mulcli ( i · i ) ∈ ℂ
7 3 4 6 subadd2i ( ( 0 − 1 ) = ( i · i ) ↔ ( ( i · i ) + 1 ) = 0 )
8 2 7 mpbir ( 0 − 1 ) = ( i · i )
9 1 8 eqtr2i ( i · i ) = - 1