Metamath Proof Explorer


Theorem ixp0x

Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007)

Ref Expression
Assertion ixp0x X 𝑥 ∈ ∅ 𝐴 = { ∅ }

Proof

Step Hyp Ref Expression
1 dfixp X 𝑥 ∈ ∅ 𝐴 = { 𝑓 ∣ ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) ∈ 𝐴 ) }
2 velsn ( 𝑓 ∈ { ∅ } ↔ 𝑓 = ∅ )
3 fn0 ( 𝑓 Fn ∅ ↔ 𝑓 = ∅ )
4 ral0 𝑥 ∈ ∅ ( 𝑓𝑥 ) ∈ 𝐴
5 4 biantru ( 𝑓 Fn ∅ ↔ ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) ∈ 𝐴 ) )
6 2 3 5 3bitr2i ( 𝑓 ∈ { ∅ } ↔ ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) ∈ 𝐴 ) )
7 6 abbi2i { ∅ } = { 𝑓 ∣ ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑓𝑥 ) ∈ 𝐴 ) }
8 1 7 eqtr4i X 𝑥 ∈ ∅ 𝐴 = { ∅ }