Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixp0x | ⊢ X 𝑥 ∈ ∅ 𝐴 = { ∅ } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfixp | ⊢ X 𝑥 ∈ ∅ 𝐴 = { 𝑓 ∣ ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) } | |
| 2 | velsn | ⊢ ( 𝑓 ∈ { ∅ } ↔ 𝑓 = ∅ ) | |
| 3 | fn0 | ⊢ ( 𝑓 Fn ∅ ↔ 𝑓 = ∅ ) | |
| 4 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 | |
| 5 | 4 | biantru | ⊢ ( 𝑓 Fn ∅ ↔ ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) ) | 
| 6 | 2 3 5 | 3bitr2i | ⊢ ( 𝑓 ∈ { ∅ } ↔ ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) ) | 
| 7 | 6 | eqabi | ⊢ { ∅ } = { 𝑓 ∣ ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) } | 
| 8 | 1 7 | eqtr4i | ⊢ X 𝑥 ∈ ∅ 𝐴 = { ∅ } |