Metamath Proof Explorer


Theorem ixpconst

Description: Infinite Cartesian product of a constant B . (Contributed by NM, 28-Sep-2006)

Ref Expression
Hypotheses ixpconst.1 𝐴 ∈ V
ixpconst.2 𝐵 ∈ V
Assertion ixpconst X 𝑥𝐴 𝐵 = ( 𝐵m 𝐴 )

Proof

Step Hyp Ref Expression
1 ixpconst.1 𝐴 ∈ V
2 ixpconst.2 𝐵 ∈ V
3 ixpconstg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → X 𝑥𝐴 𝐵 = ( 𝐵m 𝐴 ) )
4 1 2 3 mp2an X 𝑥𝐴 𝐵 = ( 𝐵m 𝐴 )