Metamath Proof Explorer
Description: Infinite Cartesian product of a constant B . (Contributed by NM, 28-Sep-2006)
|
|
Ref |
Expression |
|
Hypotheses |
ixpconst.1 |
⊢ 𝐴 ∈ V |
|
|
ixpconst.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
ixpconst |
⊢ X 𝑥 ∈ 𝐴 𝐵 = ( 𝐵 ↑m 𝐴 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ixpconst.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
ixpconst.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
ixpconstg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → X 𝑥 ∈ 𝐴 𝐵 = ( 𝐵 ↑m 𝐴 ) ) |
| 4 |
1 2 3
|
mp2an |
⊢ X 𝑥 ∈ 𝐴 𝐵 = ( 𝐵 ↑m 𝐴 ) |