Metamath Proof Explorer


Theorem ixpconstg

Description: Infinite Cartesian product of a constant B . (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Assertion ixpconstg ( ( 𝐴𝑉𝐵𝑊 ) → X 𝑥𝐴 𝐵 = ( 𝐵m 𝐴 ) )

Proof

Step Hyp Ref Expression
1 vex 𝑓 ∈ V
2 1 elixpconst ( 𝑓X 𝑥𝐴 𝐵𝑓 : 𝐴𝐵 )
3 2 abbi2i X 𝑥𝐴 𝐵 = { 𝑓𝑓 : 𝐴𝐵 }
4 mapvalg ( ( 𝐵𝑊𝐴𝑉 ) → ( 𝐵m 𝐴 ) = { 𝑓𝑓 : 𝐴𝐵 } )
5 3 4 eqtr4id ( ( 𝐵𝑊𝐴𝑉 ) → X 𝑥𝐴 𝐵 = ( 𝐵m 𝐴 ) )
6 5 ancoms ( ( 𝐴𝑉𝐵𝑊 ) → X 𝑥𝐴 𝐵 = ( 𝐵m 𝐴 ) )