| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fneq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝑓  Fn  𝐴  ↔  𝑓  Fn  𝐵 ) ) | 
						
							| 2 |  | raleq | ⊢ ( 𝐴  =  𝐵  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶  ↔  ∀ 𝑥  ∈  𝐵 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 3 | 1 2 | anbi12d | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 )  ↔  ( 𝑓  Fn  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) ) | 
						
							| 4 | 3 | abbidv | ⊢ ( 𝐴  =  𝐵  →  { 𝑓  ∣  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) }  =  { 𝑓  ∣  ( 𝑓  Fn  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) } ) | 
						
							| 5 |  | dfixp | ⊢ X 𝑥  ∈  𝐴 𝐶  =  { 𝑓  ∣  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) } | 
						
							| 6 |  | dfixp | ⊢ X 𝑥  ∈  𝐵 𝐶  =  { 𝑓  ∣  ( 𝑓  Fn  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) } | 
						
							| 7 | 4 5 6 | 3eqtr4g | ⊢ ( 𝐴  =  𝐵  →  X 𝑥  ∈  𝐴 𝐶  =  X 𝑥  ∈  𝐵 𝐶 ) |