Metamath Proof Explorer


Theorem ixpeq2

Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006)

Ref Expression
Assertion ixpeq2 ( ∀ 𝑥𝐴 𝐵 = 𝐶X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 ss2ixp ( ∀ 𝑥𝐴 𝐵𝐶X 𝑥𝐴 𝐵X 𝑥𝐴 𝐶 )
2 ss2ixp ( ∀ 𝑥𝐴 𝐶𝐵X 𝑥𝐴 𝐶X 𝑥𝐴 𝐵 )
3 1 2 anim12i ( ( ∀ 𝑥𝐴 𝐵𝐶 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → ( X 𝑥𝐴 𝐵X 𝑥𝐴 𝐶X 𝑥𝐴 𝐶X 𝑥𝐴 𝐵 ) )
4 eqss ( 𝐵 = 𝐶 ↔ ( 𝐵𝐶𝐶𝐵 ) )
5 4 ralbii ( ∀ 𝑥𝐴 𝐵 = 𝐶 ↔ ∀ 𝑥𝐴 ( 𝐵𝐶𝐶𝐵 ) )
6 r19.26 ( ∀ 𝑥𝐴 ( 𝐵𝐶𝐶𝐵 ) ↔ ( ∀ 𝑥𝐴 𝐵𝐶 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) )
7 5 6 bitri ( ∀ 𝑥𝐴 𝐵 = 𝐶 ↔ ( ∀ 𝑥𝐴 𝐵𝐶 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) )
8 eqss ( X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐶 ↔ ( X 𝑥𝐴 𝐵X 𝑥𝐴 𝐶X 𝑥𝐴 𝐶X 𝑥𝐴 𝐵 ) )
9 3 7 8 3imtr4i ( ∀ 𝑥𝐴 𝐵 = 𝐶X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐶 )