| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ss2ixp | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝐶  →  X 𝑥  ∈  𝐴 𝐵  ⊆  X 𝑥  ∈  𝐴 𝐶 ) | 
						
							| 2 |  | ss2ixp | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐶  ⊆  𝐵  →  X 𝑥  ∈  𝐴 𝐶  ⊆  X 𝑥  ∈  𝐴 𝐵 ) | 
						
							| 3 | 1 2 | anim12i | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝐶  ∧  ∀ 𝑥  ∈  𝐴 𝐶  ⊆  𝐵 )  →  ( X 𝑥  ∈  𝐴 𝐵  ⊆  X 𝑥  ∈  𝐴 𝐶  ∧  X 𝑥  ∈  𝐴 𝐶  ⊆  X 𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 4 |  | eqss | ⊢ ( 𝐵  =  𝐶  ↔  ( 𝐵  ⊆  𝐶  ∧  𝐶  ⊆  𝐵 ) ) | 
						
							| 5 | 4 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐵  ⊆  𝐶  ∧  𝐶  ⊆  𝐵 ) ) | 
						
							| 6 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝐵  ⊆  𝐶  ∧  𝐶  ⊆  𝐵 )  ↔  ( ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝐶  ∧  ∀ 𝑥  ∈  𝐴 𝐶  ⊆  𝐵 ) ) | 
						
							| 7 | 5 6 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶  ↔  ( ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝐶  ∧  ∀ 𝑥  ∈  𝐴 𝐶  ⊆  𝐵 ) ) | 
						
							| 8 |  | eqss | ⊢ ( X 𝑥  ∈  𝐴 𝐵  =  X 𝑥  ∈  𝐴 𝐶  ↔  ( X 𝑥  ∈  𝐴 𝐵  ⊆  X 𝑥  ∈  𝐴 𝐶  ∧  X 𝑥  ∈  𝐴 𝐶  ⊆  X 𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 9 | 3 7 8 | 3imtr4i | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  =  𝐶  →  X 𝑥  ∈  𝐴 𝐵  =  X 𝑥  ∈  𝐴 𝐶 ) |