Metamath Proof Explorer


Theorem ixpeq2d

Description: Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ixpeq2d.1 𝑥 𝜑
ixpeq2d.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
Assertion ixpeq2d ( 𝜑X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 ixpeq2d.1 𝑥 𝜑
2 ixpeq2d.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
3 2 ex ( 𝜑 → ( 𝑥𝐴𝐵 = 𝐶 ) )
4 1 3 ralrimi ( 𝜑 → ∀ 𝑥𝐴 𝐵 = 𝐶 )
5 ixpeq2 ( ∀ 𝑥𝐴 𝐵 = 𝐶X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐶 )
6 4 5 syl ( 𝜑X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐶 )