Metamath Proof Explorer


Theorem ixpeq2dv

Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis ixpeq2dv.1 ( 𝜑𝐵 = 𝐶 )
Assertion ixpeq2dv ( 𝜑X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 ixpeq2dv.1 ( 𝜑𝐵 = 𝐶 )
2 1 adantr ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
3 2 ixpeq2dva ( 𝜑X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐶 )