Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ixpeq2dva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) | |
Assertion | ixpeq2dva | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐴 𝐵 = X 𝑥 ∈ 𝐴 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpeq2dva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) | |
2 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |
3 | ixpeq2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → X 𝑥 ∈ 𝐴 𝐵 = X 𝑥 ∈ 𝐴 𝐶 ) | |
4 | 2 3 | syl | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐴 𝐵 = X 𝑥 ∈ 𝐴 𝐶 ) |