Metamath Proof Explorer


Theorem ixpeq2dva

Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis ixpeq2dva.1 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
Assertion ixpeq2dva ( 𝜑X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 ixpeq2dva.1 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
2 1 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵 = 𝐶 )
3 ixpeq2 ( ∀ 𝑥𝐴 𝐵 = 𝐶X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐶 )
4 2 3 syl ( 𝜑X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐶 )