Metamath Proof Explorer


Theorem ixpexg

Description: The existence of an infinite Cartesian product. x is normally a free-variable parameter in B . Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006) (Revised by Mario Carneiro, 25-Jan-2015)

Ref Expression
Assertion ixpexg ( ∀ 𝑥𝐴 𝐵𝑉X 𝑥𝐴 𝐵 ∈ V )

Proof

Step Hyp Ref Expression
1 uniixp X 𝑥𝐴 𝐵 ⊆ ( 𝐴 × 𝑥𝐴 𝐵 )
2 iunexg ( ( 𝐴 ∈ V ∧ ∀ 𝑥𝐴 𝐵𝑉 ) → 𝑥𝐴 𝐵 ∈ V )
3 xpexg ( ( 𝐴 ∈ V ∧ 𝑥𝐴 𝐵 ∈ V ) → ( 𝐴 × 𝑥𝐴 𝐵 ) ∈ V )
4 2 3 syldan ( ( 𝐴 ∈ V ∧ ∀ 𝑥𝐴 𝐵𝑉 ) → ( 𝐴 × 𝑥𝐴 𝐵 ) ∈ V )
5 ssexg ( ( X 𝑥𝐴 𝐵 ⊆ ( 𝐴 × 𝑥𝐴 𝐵 ) ∧ ( 𝐴 × 𝑥𝐴 𝐵 ) ∈ V ) → X 𝑥𝐴 𝐵 ∈ V )
6 1 4 5 sylancr ( ( 𝐴 ∈ V ∧ ∀ 𝑥𝐴 𝐵𝑉 ) → X 𝑥𝐴 𝐵 ∈ V )
7 uniexb ( X 𝑥𝐴 𝐵 ∈ V ↔ X 𝑥𝐴 𝐵 ∈ V )
8 6 7 sylibr ( ( 𝐴 ∈ V ∧ ∀ 𝑥𝐴 𝐵𝑉 ) → X 𝑥𝐴 𝐵 ∈ V )
9 ixpprc ( ¬ 𝐴 ∈ V → X 𝑥𝐴 𝐵 = ∅ )
10 0ex ∅ ∈ V
11 9 10 eqeltrdi ( ¬ 𝐴 ∈ V → X 𝑥𝐴 𝐵 ∈ V )
12 11 adantr ( ( ¬ 𝐴 ∈ V ∧ ∀ 𝑥𝐴 𝐵𝑉 ) → X 𝑥𝐴 𝐵 ∈ V )
13 8 12 pm2.61ian ( ∀ 𝑥𝐴 𝐵𝑉X 𝑥𝐴 𝐵 ∈ V )