| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r19.28zv | ⊢ ( 𝐵  ≠  ∅  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 )  ↔  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) ) | 
						
							| 2 |  | eliin | ⊢ ( 𝑓  ∈  V  →  ( 𝑓  ∈  ∩  𝑦  ∈  𝐵 X 𝑥  ∈  𝐴 𝐶  ↔  ∀ 𝑦  ∈  𝐵 𝑓  ∈  X 𝑥  ∈  𝐴 𝐶 ) ) | 
						
							| 3 | 2 | elv | ⊢ ( 𝑓  ∈  ∩  𝑦  ∈  𝐵 X 𝑥  ∈  𝐴 𝐶  ↔  ∀ 𝑦  ∈  𝐵 𝑓  ∈  X 𝑥  ∈  𝐴 𝐶 ) | 
						
							| 4 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 5 | 4 | elixp | ⊢ ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐶  ↔  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 6 | 5 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝐵 𝑓  ∈  X 𝑥  ∈  𝐴 𝐶  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 7 | 3 6 | bitri | ⊢ ( 𝑓  ∈  ∩  𝑦  ∈  𝐵 X 𝑥  ∈  𝐴 𝐶  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 8 | 4 | elixp | ⊢ ( 𝑓  ∈  X 𝑥  ∈  𝐴 ∩  𝑦  ∈  𝐵 𝐶  ↔  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ∩  𝑦  ∈  𝐵 𝐶 ) ) | 
						
							| 9 |  | fvex | ⊢ ( 𝑓 ‘ 𝑥 )  ∈  V | 
						
							| 10 |  | eliin | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  V  →  ( ( 𝑓 ‘ 𝑥 )  ∈  ∩  𝑦  ∈  𝐵 𝐶  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  ∩  𝑦  ∈  𝐵 𝐶  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 12 | 11 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ∩  𝑦  ∈  𝐵 𝐶  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 13 |  | ralcom | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑓 ‘ 𝑥 )  ∈  𝐶  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 14 | 12 13 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ∩  𝑦  ∈  𝐵 𝐶  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 15 | 14 | anbi2i | ⊢ ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ∩  𝑦  ∈  𝐵 𝐶 )  ↔  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 16 | 8 15 | bitri | ⊢ ( 𝑓  ∈  X 𝑥  ∈  𝐴 ∩  𝑦  ∈  𝐵 𝐶  ↔  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 17 | 1 7 16 | 3bitr4g | ⊢ ( 𝐵  ≠  ∅  →  ( 𝑓  ∈  ∩  𝑦  ∈  𝐵 X 𝑥  ∈  𝐴 𝐶  ↔  𝑓  ∈  X 𝑥  ∈  𝐴 ∩  𝑦  ∈  𝐵 𝐶 ) ) | 
						
							| 18 | 17 | eqrdv | ⊢ ( 𝐵  ≠  ∅  →  ∩  𝑦  ∈  𝐵 X 𝑥  ∈  𝐴 𝐶  =  X 𝑥  ∈  𝐴 ∩  𝑦  ∈  𝐵 𝐶 ) | 
						
							| 19 | 18 | eqcomd | ⊢ ( 𝐵  ≠  ∅  →  X 𝑥  ∈  𝐴 ∩  𝑦  ∈  𝐵 𝐶  =  ∩  𝑦  ∈  𝐵 X 𝑥  ∈  𝐴 𝐶 ) |