Metamath Proof Explorer


Theorem ixpin

Description: The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Assertion ixpin X 𝑥𝐴 ( 𝐵𝐶 ) = ( X 𝑥𝐴 𝐵X 𝑥𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 anandi ( ( 𝑓 Fn 𝐴 ∧ ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐶 ) ) ↔ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ) ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐶 ) ) )
2 elin ( ( 𝑓𝑥 ) ∈ ( 𝐵𝐶 ) ↔ ( ( 𝑓𝑥 ) ∈ 𝐵 ∧ ( 𝑓𝑥 ) ∈ 𝐶 ) )
3 2 ralbii ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 ( ( 𝑓𝑥 ) ∈ 𝐵 ∧ ( 𝑓𝑥 ) ∈ 𝐶 ) )
4 r19.26 ( ∀ 𝑥𝐴 ( ( 𝑓𝑥 ) ∈ 𝐵 ∧ ( 𝑓𝑥 ) ∈ 𝐶 ) ↔ ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐶 ) )
5 3 4 bitri ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ ( 𝐵𝐶 ) ↔ ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐶 ) )
6 5 anbi2i ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ ( 𝐵𝐶 ) ) ↔ ( 𝑓 Fn 𝐴 ∧ ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐶 ) ) )
7 vex 𝑓 ∈ V
8 7 elixp ( 𝑓X 𝑥𝐴 𝐵 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ) )
9 7 elixp ( 𝑓X 𝑥𝐴 𝐶 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐶 ) )
10 8 9 anbi12i ( ( 𝑓X 𝑥𝐴 𝐵𝑓X 𝑥𝐴 𝐶 ) ↔ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ) ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐶 ) ) )
11 1 6 10 3bitr4i ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ ( 𝐵𝐶 ) ) ↔ ( 𝑓X 𝑥𝐴 𝐵𝑓X 𝑥𝐴 𝐶 ) )
12 7 elixp ( 𝑓X 𝑥𝐴 ( 𝐵𝐶 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ ( 𝐵𝐶 ) ) )
13 elin ( 𝑓 ∈ ( X 𝑥𝐴 𝐵X 𝑥𝐴 𝐶 ) ↔ ( 𝑓X 𝑥𝐴 𝐵𝑓X 𝑥𝐴 𝐶 ) )
14 11 12 13 3bitr4i ( 𝑓X 𝑥𝐴 ( 𝐵𝐶 ) ↔ 𝑓 ∈ ( X 𝑥𝐴 𝐵X 𝑥𝐴 𝐶 ) )
15 14 eqriv X 𝑥𝐴 ( 𝐵𝐶 ) = ( X 𝑥𝐴 𝐵X 𝑥𝐴 𝐶 )