| Step | Hyp | Ref | Expression | 
						
							| 1 |  | anandi | ⊢ ( ( 𝑓  Fn  𝐴  ∧  ( ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) )  ↔  ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐵 )  ∧  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) ) | 
						
							| 2 |  | elin | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  ( 𝐵  ∩  𝐶 )  ↔  ( ( 𝑓 ‘ 𝑥 )  ∈  𝐵  ∧  ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ( 𝐵  ∩  𝐶 )  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝑓 ‘ 𝑥 )  ∈  𝐵  ∧  ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 4 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ( 𝑓 ‘ 𝑥 )  ∈  𝐵  ∧  ( 𝑓 ‘ 𝑥 )  ∈  𝐶 )  ↔  ( ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 5 | 3 4 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ( 𝐵  ∩  𝐶 )  ↔  ( ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 6 | 5 | anbi2i | ⊢ ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ( 𝐵  ∩  𝐶 ) )  ↔  ( 𝑓  Fn  𝐴  ∧  ( ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) ) | 
						
							| 7 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 8 | 7 | elixp | ⊢ ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵  ↔  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 9 | 7 | elixp | ⊢ ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐶  ↔  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 10 | 8 9 | anbi12i | ⊢ ( ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  𝑓  ∈  X 𝑥  ∈  𝐴 𝐶 )  ↔  ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐵 )  ∧  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐶 ) ) ) | 
						
							| 11 | 1 6 10 | 3bitr4i | ⊢ ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ( 𝐵  ∩  𝐶 ) )  ↔  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  𝑓  ∈  X 𝑥  ∈  𝐴 𝐶 ) ) | 
						
							| 12 | 7 | elixp | ⊢ ( 𝑓  ∈  X 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  ↔  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 13 |  | elin | ⊢ ( 𝑓  ∈  ( X 𝑥  ∈  𝐴 𝐵  ∩  X 𝑥  ∈  𝐴 𝐶 )  ↔  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  𝑓  ∈  X 𝑥  ∈  𝐴 𝐶 ) ) | 
						
							| 14 | 11 12 13 | 3bitr4i | ⊢ ( 𝑓  ∈  X 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  ↔  𝑓  ∈  ( X 𝑥  ∈  𝐴 𝐵  ∩  X 𝑥  ∈  𝐴 𝐶 ) ) | 
						
							| 15 | 14 | eqriv | ⊢ X 𝑥  ∈  𝐴 ( 𝐵  ∩  𝐶 )  =  ( X 𝑥  ∈  𝐴 𝐵  ∩  X 𝑥  ∈  𝐴 𝐶 ) |