Step |
Hyp |
Ref |
Expression |
1 |
|
anandi |
⊢ ( ( 𝑓 Fn 𝐴 ∧ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
2 |
|
elin |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
3 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝐵 ∩ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
4 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
5 |
3 4
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
6 |
5
|
anbi2i |
⊢ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑓 Fn 𝐴 ∧ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
7 |
|
vex |
⊢ 𝑓 ∈ V |
8 |
7
|
elixp |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
9 |
7
|
elixp |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
10 |
8 9
|
anbi12i |
⊢ ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ) ↔ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
11 |
1 6 10
|
3bitr4i |
⊢ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ) ) |
12 |
7
|
elixp |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
13 |
|
elin |
⊢ ( 𝑓 ∈ ( X 𝑥 ∈ 𝐴 𝐵 ∩ X 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐶 ) ) |
14 |
11 12 13
|
3bitr4i |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ↔ 𝑓 ∈ ( X 𝑥 ∈ 𝐴 𝐵 ∩ X 𝑥 ∈ 𝐴 𝐶 ) ) |
15 |
14
|
eqriv |
⊢ X 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ( X 𝑥 ∈ 𝐴 𝐵 ∩ X 𝑥 ∈ 𝐴 𝐶 ) |