Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑓 ∈ V |
2 |
1
|
elixp |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
3 |
2
|
simprbi |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
4 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
5 |
4
|
sseld |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
6 |
5
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
7 |
3 6
|
syl |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
8 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
9 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 |
10 |
9
|
nfel2 |
⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
13 |
8 10 12
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
14 |
7 13
|
sylib |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
16 |
15
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∀ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
17 |
|
eqid |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) |
18 |
17
|
fmpo |
⊢ ( ∀ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
19 |
16 18
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
20 |
|
ixpssmap2g |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
21 |
20
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
22 |
|
ovex |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ∈ V |
23 |
22
|
ssex |
⊢ ( X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
24 |
21 23
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
25 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → 𝐴 ∈ 𝑉 ) |
26 |
24 25
|
xpexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ∈ V ) |
27 |
19 26
|
fexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ∈ V ) |
28 |
19
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) Fn ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ) |
29 |
|
dffn4 |
⊢ ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) Fn ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
30 |
28 29
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
31 |
|
n0 |
⊢ ( X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) |
32 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) |
33 |
|
nfixp1 |
⊢ Ⅎ 𝑥 X 𝑥 ∈ 𝐴 𝐵 |
34 |
33
|
nfel2 |
⊢ Ⅎ 𝑥 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 |
35 |
|
nfv |
⊢ Ⅎ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) |
36 |
33 35
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) |
37 |
|
simplrr |
⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) |
38 |
|
iftrue |
⊢ ( 𝑘 = 𝑥 → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) = 𝑧 ) |
39 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
40 |
39
|
equcoms |
⊢ ( 𝑘 = 𝑥 → 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
41 |
40
|
eqcomd |
⊢ ( 𝑘 = 𝑥 → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
42 |
38 41
|
eleq12d |
⊢ ( 𝑘 = 𝑥 → ( if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
43 |
37 42
|
syl5ibrcom |
⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 = 𝑥 → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
44 |
|
vex |
⊢ 𝑔 ∈ V |
45 |
44
|
elixp |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) |
46 |
45
|
simprbi |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) |
47 |
46
|
adantr |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) |
48 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 |
49 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 |
50 |
49
|
nfel2 |
⊢ Ⅎ 𝑥 ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 |
51 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑘 ) ) |
52 |
51 39
|
eleq12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
53 |
48 50 52
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
54 |
47 53
|
sylib |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
55 |
54
|
r19.21bi |
⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
56 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝑥 → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) = ( 𝑔 ‘ 𝑘 ) ) |
57 |
56
|
eleq1d |
⊢ ( ¬ 𝑘 = 𝑥 → ( if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ↔ ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
58 |
55 57
|
syl5ibrcom |
⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ¬ 𝑘 = 𝑥 → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
59 |
43 58
|
pm2.61d |
⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
60 |
59
|
ralrimiva |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
61 |
|
ixpfn |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝑔 Fn 𝐴 ) |
62 |
61
|
adantr |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑔 Fn 𝐴 ) |
63 |
62
|
fndmd |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → dom 𝑔 = 𝐴 ) |
64 |
44
|
dmex |
⊢ dom 𝑔 ∈ V |
65 |
63 64
|
eqeltrrdi |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐴 ∈ V ) |
66 |
|
mptelixpg |
⊢ ( 𝐴 ∈ V → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ↔ ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
67 |
65 66
|
syl |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ↔ ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
68 |
60 67
|
mpbird |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
69 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
70 |
69 49 39
|
cbvixp |
⊢ X 𝑥 ∈ 𝐴 𝐵 = X 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 |
71 |
68 70
|
eleqtrrdi |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑥 ∈ 𝐴 𝐵 ) |
72 |
|
simprl |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐴 ) |
73 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) |
74 |
|
vex |
⊢ 𝑧 ∈ V |
75 |
38 73 74
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) = 𝑧 ) |
76 |
75
|
ad2antrl |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) = 𝑧 ) |
77 |
76
|
eqcomd |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) |
78 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) ) |
79 |
78
|
eqeq2d |
⊢ ( 𝑓 = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) → ( 𝑧 = ( 𝑓 ‘ 𝑦 ) ↔ 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) ) ) |
80 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) |
81 |
80
|
eqeq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) ↔ 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) ) |
82 |
79 81
|
rspc2ev |
⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) |
83 |
71 72 77 82
|
syl3anc |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) |
84 |
83
|
exp32 |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑧 ∈ 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) ) |
85 |
34 36 84
|
rexlimd |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
86 |
32 85
|
syl5bi |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
87 |
86
|
exlimiv |
⊢ ( ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
88 |
31 87
|
sylbi |
⊢ ( X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
89 |
88
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
90 |
89
|
alrimiv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∀ 𝑧 ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
91 |
|
ssab |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ { 𝑧 ∣ ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) } ↔ ∀ 𝑧 ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
92 |
90 91
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ { 𝑧 ∣ ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) } ) |
93 |
17
|
rnmpo |
⊢ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) = { 𝑧 ∣ ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) } |
94 |
92 93
|
sseqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
95 |
19
|
frnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
96 |
94 95
|
eqssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 𝐵 = ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
97 |
|
foeq3 |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 = ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) ) |
98 |
96 97
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) ) |
99 |
30 98
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
100 |
|
fowdom |
⊢ ( ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ∈ V ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼* ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ) |
101 |
27 99 100
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼* ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ) |