| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 2 | 1 | elixp | ⊢ ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵  ↔  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 3 | 2 | simprbi | ⊢ ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵  →  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 4 |  | ssiun2 | ⊢ ( 𝑥  ∈  𝐴  →  𝐵  ⊆  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 5 | 4 | sseld | ⊢ ( 𝑥  ∈  𝐴  →  ( ( 𝑓 ‘ 𝑥 )  ∈  𝐵  →  ( 𝑓 ‘ 𝑥 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 6 | 5 | ralimia | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝐵  →  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 7 | 3 6 | syl | ⊢ ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵  →  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝑓 ‘ 𝑥 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 | 
						
							| 9 |  | nfiu1 | ⊢ Ⅎ 𝑥 ∪  𝑥  ∈  𝐴 𝐵 | 
						
							| 10 | 9 | nfel2 | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑓 ‘ 𝑥 )  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  ( 𝑓 ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 13 | 8 10 12 | cbvralw | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑓 ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 14 | 7 13 | sylib | ⊢ ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵  →  ∀ 𝑦  ∈  𝐴 ( 𝑓 ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  ∧  𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 )  →  ∀ 𝑦  ∈  𝐴 ( 𝑓 ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 16 | 15 | ralrimiva | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ∀ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∀ 𝑦  ∈  𝐴 ( 𝑓 ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) )  =  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 18 | 17 | fmpo | ⊢ ( ∀ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∀ 𝑦  ∈  𝐴 ( 𝑓 ‘ 𝑦 )  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 ) ⟶ ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 19 | 16 18 | sylib | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 ) ⟶ ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 20 |  | ixpssmap2g | ⊢ ( ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  →  X 𝑥  ∈  𝐴 𝐵  ⊆  ( ∪  𝑥  ∈  𝐴 𝐵  ↑m  𝐴 ) ) | 
						
							| 21 | 20 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  X 𝑥  ∈  𝐴 𝐵  ⊆  ( ∪  𝑥  ∈  𝐴 𝐵  ↑m  𝐴 ) ) | 
						
							| 22 |  | ovex | ⊢ ( ∪  𝑥  ∈  𝐴 𝐵  ↑m  𝐴 )  ∈  V | 
						
							| 23 | 22 | ssex | ⊢ ( X 𝑥  ∈  𝐴 𝐵  ⊆  ( ∪  𝑥  ∈  𝐴 𝐵  ↑m  𝐴 )  →  X 𝑥  ∈  𝐴 𝐵  ∈  V ) | 
						
							| 24 | 21 23 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  X 𝑥  ∈  𝐴 𝐵  ∈  V ) | 
						
							| 25 |  | simp1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  𝐴  ∈  𝑉 ) | 
						
							| 26 | 24 25 | xpexd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 )  ∈  V ) | 
						
							| 27 | 19 26 | fexd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) )  ∈  V ) | 
						
							| 28 | 19 | ffnd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) )  Fn  ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 ) ) | 
						
							| 29 |  | dffn4 | ⊢ ( ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) )  Fn  ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 )  ↔  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 ) –onto→ ran  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 30 | 28 29 | sylib | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 ) –onto→ ran  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 31 |  | n0 | ⊢ ( X 𝑥  ∈  𝐴 𝐵  ≠  ∅  ↔  ∃ 𝑔 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵 ) | 
						
							| 32 |  | eliun | ⊢ ( 𝑧  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  ∃ 𝑥  ∈  𝐴 𝑧  ∈  𝐵 ) | 
						
							| 33 |  | nfixp1 | ⊢ Ⅎ 𝑥 X 𝑥  ∈  𝐴 𝐵 | 
						
							| 34 | 33 | nfel2 | ⊢ Ⅎ 𝑥 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵 | 
						
							| 35 |  | nfv | ⊢ Ⅎ 𝑥 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) | 
						
							| 36 | 33 35 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) | 
						
							| 37 |  | simplrr | ⊢ ( ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑘  ∈  𝐴 )  →  𝑧  ∈  𝐵 ) | 
						
							| 38 |  | iftrue | ⊢ ( 𝑘  =  𝑥  →  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) )  =  𝑧 ) | 
						
							| 39 |  | csbeq1a | ⊢ ( 𝑥  =  𝑘  →  𝐵  =  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) | 
						
							| 40 | 39 | equcoms | ⊢ ( 𝑘  =  𝑥  →  𝐵  =  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) | 
						
							| 41 | 40 | eqcomd | ⊢ ( 𝑘  =  𝑥  →  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  =  𝐵 ) | 
						
							| 42 | 38 41 | eleq12d | ⊢ ( 𝑘  =  𝑥  →  ( if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  ↔  𝑧  ∈  𝐵 ) ) | 
						
							| 43 | 37 42 | syl5ibrcom | ⊢ ( ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑘  ∈  𝐴 )  →  ( 𝑘  =  𝑥  →  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 44 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 45 | 44 | elixp | ⊢ ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ↔  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 46 | 45 | simprbi | ⊢ ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  →  ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 48 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝑔 ‘ 𝑥 )  ∈  𝐵 | 
						
							| 49 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑘  /  𝑥 ⦌ 𝐵 | 
						
							| 50 | 49 | nfel2 | ⊢ Ⅎ 𝑥 ( 𝑔 ‘ 𝑘 )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 | 
						
							| 51 |  | fveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 𝑔 ‘ 𝑥 )  =  ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 52 | 51 39 | eleq12d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝑔 ‘ 𝑥 )  ∈  𝐵  ↔  ( 𝑔 ‘ 𝑘 )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 53 | 48 50 52 | cbvralw | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  𝐵  ↔  ∀ 𝑘  ∈  𝐴 ( 𝑔 ‘ 𝑘 )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) | 
						
							| 54 | 47 53 | sylib | ⊢ ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ∀ 𝑘  ∈  𝐴 ( 𝑔 ‘ 𝑘 )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) | 
						
							| 55 | 54 | r19.21bi | ⊢ ( ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑘  ∈  𝐴 )  →  ( 𝑔 ‘ 𝑘 )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) | 
						
							| 56 |  | iffalse | ⊢ ( ¬  𝑘  =  𝑥  →  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) )  =  ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 57 | 56 | eleq1d | ⊢ ( ¬  𝑘  =  𝑥  →  ( if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  ↔  ( 𝑔 ‘ 𝑘 )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 58 | 55 57 | syl5ibrcom | ⊢ ( ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑘  ∈  𝐴 )  →  ( ¬  𝑘  =  𝑥  →  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 59 | 43 58 | pm2.61d | ⊢ ( ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑘  ∈  𝐴 )  →  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) | 
						
							| 60 | 59 | ralrimiva | ⊢ ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ∀ 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) | 
						
							| 61 |  | ixpfn | ⊢ ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  →  𝑔  Fn  𝐴 ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  𝑔  Fn  𝐴 ) | 
						
							| 63 | 62 | fndmd | ⊢ ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  dom  𝑔  =  𝐴 ) | 
						
							| 64 | 44 | dmex | ⊢ dom  𝑔  ∈  V | 
						
							| 65 | 63 64 | eqeltrrdi | ⊢ ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  𝐴  ∈  V ) | 
						
							| 66 |  | mptelixpg | ⊢ ( 𝐴  ∈  V  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) )  ∈  X 𝑘  ∈  𝐴 ⦋ 𝑘  /  𝑥 ⦌ 𝐵  ↔  ∀ 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 67 | 65 66 | syl | ⊢ ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) )  ∈  X 𝑘  ∈  𝐴 ⦋ 𝑘  /  𝑥 ⦌ 𝐵  ↔  ∀ 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) )  ∈  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 68 | 60 67 | mpbird | ⊢ ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) )  ∈  X 𝑘  ∈  𝐴 ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) | 
						
							| 69 |  | nfcv | ⊢ Ⅎ 𝑘 𝐵 | 
						
							| 70 | 69 49 39 | cbvixp | ⊢ X 𝑥  ∈  𝐴 𝐵  =  X 𝑘  ∈  𝐴 ⦋ 𝑘  /  𝑥 ⦌ 𝐵 | 
						
							| 71 | 68 70 | eleqtrrdi | ⊢ ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) )  ∈  X 𝑥  ∈  𝐴 𝐵 ) | 
						
							| 72 |  | simprl | ⊢ ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 73 |  | eqid | ⊢ ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) ) | 
						
							| 74 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 75 | 38 73 74 | fvmpt | ⊢ ( 𝑥  ∈  𝐴  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 )  =  𝑧 ) | 
						
							| 76 | 75 | ad2antrl | ⊢ ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 )  =  𝑧 ) | 
						
							| 77 | 76 | eqcomd | ⊢ ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  𝑧  =  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) | 
						
							| 78 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) )  →  ( 𝑓 ‘ 𝑦 )  =  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) ) | 
						
							| 79 | 78 | eqeq2d | ⊢ ( 𝑓  =  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) )  →  ( 𝑧  =  ( 𝑓 ‘ 𝑦 )  ↔  𝑧  =  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) ) ) | 
						
							| 80 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 )  =  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) | 
						
							| 81 | 80 | eqeq2d | ⊢ ( 𝑦  =  𝑥  →  ( 𝑧  =  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 )  ↔  𝑧  =  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) ) | 
						
							| 82 | 79 81 | rspc2ev | ⊢ ( ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) )  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  𝑥  ∈  𝐴  ∧  𝑧  =  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  =  𝑥 ,  𝑧 ,  ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) )  →  ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 83 | 71 72 77 82 | syl3anc | ⊢ ( ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  →  ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 84 | 83 | exp32 | ⊢ ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  →  ( 𝑥  ∈  𝐴  →  ( 𝑧  ∈  𝐵  →  ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 85 | 34 36 84 | rexlimd | ⊢ ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  →  ( ∃ 𝑥  ∈  𝐴 𝑧  ∈  𝐵  →  ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 86 | 32 85 | biimtrid | ⊢ ( 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  →  ( 𝑧  ∈  ∪  𝑥  ∈  𝐴 𝐵  →  ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 87 | 86 | exlimiv | ⊢ ( ∃ 𝑔 𝑔  ∈  X 𝑥  ∈  𝐴 𝐵  →  ( 𝑧  ∈  ∪  𝑥  ∈  𝐴 𝐵  →  ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 88 | 31 87 | sylbi | ⊢ ( X 𝑥  ∈  𝐴 𝐵  ≠  ∅  →  ( 𝑧  ∈  ∪  𝑥  ∈  𝐴 𝐵  →  ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 89 | 88 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ( 𝑧  ∈  ∪  𝑥  ∈  𝐴 𝐵  →  ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 90 | 89 | alrimiv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ∀ 𝑧 ( 𝑧  ∈  ∪  𝑥  ∈  𝐴 𝐵  →  ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 91 |  | ssab | ⊢ ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  { 𝑧  ∣  ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) }  ↔  ∀ 𝑧 ( 𝑧  ∈  ∪  𝑥  ∈  𝐴 𝐵  →  ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 92 | 90 91 | sylibr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ∪  𝑥  ∈  𝐴 𝐵  ⊆  { 𝑧  ∣  ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) } ) | 
						
							| 93 | 17 | rnmpo | ⊢ ran  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) )  =  { 𝑧  ∣  ∃ 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ∃ 𝑦  ∈  𝐴 𝑧  =  ( 𝑓 ‘ 𝑦 ) } | 
						
							| 94 | 92 93 | sseqtrrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ∪  𝑥  ∈  𝐴 𝐵  ⊆  ran  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 95 | 19 | frnd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ran  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) )  ⊆  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 96 | 94 95 | eqssd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ∪  𝑥  ∈  𝐴 𝐵  =  ran  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 97 |  | foeq3 | ⊢ ( ∪  𝑥  ∈  𝐴 𝐵  =  ran  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) )  →  ( ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 ) –onto→ ∪  𝑥  ∈  𝐴 𝐵  ↔  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 ) –onto→ ran  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 98 | 96 97 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ( ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 ) –onto→ ∪  𝑥  ∈  𝐴 𝐵  ↔  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 ) –onto→ ran  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) ) ) | 
						
							| 99 | 30 98 | mpbird | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 ) –onto→ ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 100 |  | fowdom | ⊢ ( ( ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) )  ∈  V  ∧  ( 𝑓  ∈  X 𝑥  ∈  𝐴 𝐵 ,  𝑦  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 ) –onto→ ∪  𝑥  ∈  𝐴 𝐵 )  →  ∪  𝑥  ∈  𝐴 𝐵  ≼*  ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 ) ) | 
						
							| 101 | 27 99 100 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∪  𝑥  ∈  𝐴 𝐵  ∈  𝑊  ∧  X 𝑥  ∈  𝐴 𝐵  ≠  ∅ )  →  ∪  𝑥  ∈  𝐴 𝐵  ≼*  ( X 𝑥  ∈  𝐴 𝐵  ×  𝐴 ) ) |