Metamath Proof Explorer


Theorem ixpn0

Description: The infinite Cartesian product of a family B ( x ) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 . (Contributed by Mario Carneiro, 22-Jun-2016)

Ref Expression
Assertion ixpn0 ( X 𝑥𝐴 𝐵 ≠ ∅ → ∀ 𝑥𝐴 𝐵 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 n0 ( X 𝑥𝐴 𝐵 ≠ ∅ ↔ ∃ 𝑓 𝑓X 𝑥𝐴 𝐵 )
2 df-ixp X 𝑥𝐴 𝐵 = { 𝑓 ∣ ( 𝑓 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ) }
3 2 abeq2i ( 𝑓X 𝑥𝐴 𝐵 ↔ ( 𝑓 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ) )
4 ne0i ( ( 𝑓𝑥 ) ∈ 𝐵𝐵 ≠ ∅ )
5 4 ralimi ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 → ∀ 𝑥𝐴 𝐵 ≠ ∅ )
6 3 5 simplbiim ( 𝑓X 𝑥𝐴 𝐵 → ∀ 𝑥𝐴 𝐵 ≠ ∅ )
7 6 exlimiv ( ∃ 𝑓 𝑓X 𝑥𝐴 𝐵 → ∀ 𝑥𝐴 𝐵 ≠ ∅ )
8 1 7 sylbi ( X 𝑥𝐴 𝐵 ≠ ∅ → ∀ 𝑥𝐴 𝐵 ≠ ∅ )