Metamath Proof Explorer


Theorem ixpsnval

Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018)

Ref Expression
Assertion ixpsnval ( 𝑋𝑉X 𝑥 ∈ { 𝑋 } 𝐵 = { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ( 𝑓𝑋 ) ∈ 𝑋 / 𝑥 𝐵 ) } )

Proof

Step Hyp Ref Expression
1 dfixp X 𝑥 ∈ { 𝑋 } 𝐵 = { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ∀ 𝑥 ∈ { 𝑋 } ( 𝑓𝑥 ) ∈ 𝐵 ) }
2 ralsnsg ( 𝑋𝑉 → ( ∀ 𝑥 ∈ { 𝑋 } ( 𝑓𝑥 ) ∈ 𝐵[ 𝑋 / 𝑥 ] ( 𝑓𝑥 ) ∈ 𝐵 ) )
3 sbcel12 ( [ 𝑋 / 𝑥 ] ( 𝑓𝑥 ) ∈ 𝐵 𝑋 / 𝑥 ( 𝑓𝑥 ) ∈ 𝑋 / 𝑥 𝐵 )
4 csbfv2g ( 𝑋𝑉 𝑋 / 𝑥 ( 𝑓𝑥 ) = ( 𝑓 𝑋 / 𝑥 𝑥 ) )
5 csbvarg ( 𝑋𝑉 𝑋 / 𝑥 𝑥 = 𝑋 )
6 5 fveq2d ( 𝑋𝑉 → ( 𝑓 𝑋 / 𝑥 𝑥 ) = ( 𝑓𝑋 ) )
7 4 6 eqtrd ( 𝑋𝑉 𝑋 / 𝑥 ( 𝑓𝑥 ) = ( 𝑓𝑋 ) )
8 7 eleq1d ( 𝑋𝑉 → ( 𝑋 / 𝑥 ( 𝑓𝑥 ) ∈ 𝑋 / 𝑥 𝐵 ↔ ( 𝑓𝑋 ) ∈ 𝑋 / 𝑥 𝐵 ) )
9 3 8 bitrid ( 𝑋𝑉 → ( [ 𝑋 / 𝑥 ] ( 𝑓𝑥 ) ∈ 𝐵 ↔ ( 𝑓𝑋 ) ∈ 𝑋 / 𝑥 𝐵 ) )
10 2 9 bitrd ( 𝑋𝑉 → ( ∀ 𝑥 ∈ { 𝑋 } ( 𝑓𝑥 ) ∈ 𝐵 ↔ ( 𝑓𝑋 ) ∈ 𝑋 / 𝑥 𝐵 ) )
11 10 anbi2d ( 𝑋𝑉 → ( ( 𝑓 Fn { 𝑋 } ∧ ∀ 𝑥 ∈ { 𝑋 } ( 𝑓𝑥 ) ∈ 𝐵 ) ↔ ( 𝑓 Fn { 𝑋 } ∧ ( 𝑓𝑋 ) ∈ 𝑋 / 𝑥 𝐵 ) ) )
12 11 abbidv ( 𝑋𝑉 → { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ∀ 𝑥 ∈ { 𝑋 } ( 𝑓𝑥 ) ∈ 𝐵 ) } = { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ( 𝑓𝑋 ) ∈ 𝑋 / 𝑥 𝐵 ) } )
13 1 12 eqtrid ( 𝑋𝑉X 𝑥 ∈ { 𝑋 } 𝐵 = { 𝑓 ∣ ( 𝑓 Fn { 𝑋 } ∧ ( 𝑓𝑋 ) ∈ 𝑋 / 𝑥 𝐵 ) } )