Metamath Proof Explorer


Theorem ixpssmap2g

Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg avoids ax-rep . (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion ixpssmap2g ( 𝑥𝐴 𝐵𝑉X 𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ixpf ( 𝑓X 𝑥𝐴 𝐵𝑓 : 𝐴 𝑥𝐴 𝐵 )
2 1 adantl ( ( 𝑥𝐴 𝐵𝑉𝑓X 𝑥𝐴 𝐵 ) → 𝑓 : 𝐴 𝑥𝐴 𝐵 )
3 n0i ( 𝑓X 𝑥𝐴 𝐵 → ¬ X 𝑥𝐴 𝐵 = ∅ )
4 ixpprc ( ¬ 𝐴 ∈ V → X 𝑥𝐴 𝐵 = ∅ )
5 3 4 nsyl2 ( 𝑓X 𝑥𝐴 𝐵𝐴 ∈ V )
6 elmapg ( ( 𝑥𝐴 𝐵𝑉𝐴 ∈ V ) → ( 𝑓 ∈ ( 𝑥𝐴 𝐵m 𝐴 ) ↔ 𝑓 : 𝐴 𝑥𝐴 𝐵 ) )
7 5 6 sylan2 ( ( 𝑥𝐴 𝐵𝑉𝑓X 𝑥𝐴 𝐵 ) → ( 𝑓 ∈ ( 𝑥𝐴 𝐵m 𝐴 ) ↔ 𝑓 : 𝐴 𝑥𝐴 𝐵 ) )
8 2 7 mpbird ( ( 𝑥𝐴 𝐵𝑉𝑓X 𝑥𝐴 𝐵 ) → 𝑓 ∈ ( 𝑥𝐴 𝐵m 𝐴 ) )
9 8 ex ( 𝑥𝐴 𝐵𝑉 → ( 𝑓X 𝑥𝐴 𝐵𝑓 ∈ ( 𝑥𝐴 𝐵m 𝐴 ) ) )
10 9 ssrdv ( 𝑥𝐴 𝐵𝑉X 𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴 ) )