Metamath Proof Explorer


Theorem ixpssmapc

Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses ixpssmapc.x 𝑥 𝜑
ixpssmapc.c ( 𝜑𝐶𝑉 )
ixpssmapc.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
Assertion ixpssmapc ( 𝜑X 𝑥𝐴 𝐵 ⊆ ( 𝐶m 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ixpssmapc.x 𝑥 𝜑
2 ixpssmapc.c ( 𝜑𝐶𝑉 )
3 ixpssmapc.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
4 3 ex ( 𝜑 → ( 𝑥𝐴𝐵𝐶 ) )
5 1 4 ralrimi ( 𝜑 → ∀ 𝑥𝐴 𝐵𝐶 )
6 iunss ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )
7 5 6 sylibr ( 𝜑 𝑥𝐴 𝐵𝐶 )
8 2 7 ssexd ( 𝜑 𝑥𝐴 𝐵 ∈ V )
9 ixpssmap2g ( 𝑥𝐴 𝐵 ∈ V → X 𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴 ) )
10 8 9 syl ( 𝜑X 𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴 ) )
11 mapss ( ( 𝐶𝑉 𝑥𝐴 𝐵𝐶 ) → ( 𝑥𝐴 𝐵m 𝐴 ) ⊆ ( 𝐶m 𝐴 ) )
12 2 7 11 syl2anc ( 𝜑 → ( 𝑥𝐴 𝐵m 𝐴 ) ⊆ ( 𝐶m 𝐴 ) )
13 10 12 sstrd ( 𝜑X 𝑥𝐴 𝐵 ⊆ ( 𝐶m 𝐴 ) )