Step |
Hyp |
Ref |
Expression |
1 |
|
ixpssmapc.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
ixpssmapc.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
3 |
|
ixpssmapc.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) |
4 |
3
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶 ) ) |
5 |
1 4
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
6 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
7 |
5 6
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
8 |
2 7
|
ssexd |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
9 |
|
ixpssmap2g |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
11 |
|
mapss |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) → ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ⊆ ( 𝐶 ↑m 𝐴 ) ) |
12 |
2 7 11
|
syl2anc |
⊢ ( 𝜑 → ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ⊆ ( 𝐶 ↑m 𝐴 ) ) |
13 |
10 12
|
sstrd |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( 𝐶 ↑m 𝐴 ) ) |