Step |
Hyp |
Ref |
Expression |
1 |
|
n0i |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ¬ X 𝑥 ∈ 𝐴 𝐵 = ∅ ) |
2 |
|
ixpprc |
⊢ ( ¬ 𝐴 ∈ V → X 𝑥 ∈ 𝐴 𝐵 = ∅ ) |
3 |
1 2
|
nsyl2 |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V ) |
4 |
|
id |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
5 |
|
iunexg |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
6 |
3 4 5
|
syl2anr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
7 |
|
ixpssmap2g |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
8 |
6 7
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
9 |
|
simpr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) |
10 |
8 9
|
sseldd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → 𝑓 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
11 |
10
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝑓 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) ) |
12 |
11
|
ssrdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |