Metamath Proof Explorer


Theorem ixxex

Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis ixx.1 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧𝑧 𝑆 𝑦 ) } )
Assertion ixxex 𝑂 ∈ V

Proof

Step Hyp Ref Expression
1 ixx.1 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧𝑧 𝑆 𝑦 ) } )
2 xrex * ∈ V
3 2 2 xpex ( ℝ* × ℝ* ) ∈ V
4 2 pwex 𝒫 ℝ* ∈ V
5 3 4 xpex ( ( ℝ* × ℝ* ) × 𝒫 ℝ* ) ∈ V
6 1 ixxf 𝑂 : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ*
7 fssxp ( 𝑂 : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ*𝑂 ⊆ ( ( ℝ* × ℝ* ) × 𝒫 ℝ* ) )
8 6 7 ax-mp 𝑂 ⊆ ( ( ℝ* × ℝ* ) × 𝒫 ℝ* )
9 5 8 ssexi 𝑂 ∈ V