Metamath Proof Explorer


Theorem ixxf

Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Hypothesis ixx.1 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧𝑧 𝑆 𝑦 ) } )
Assertion ixxf 𝑂 : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ*

Proof

Step Hyp Ref Expression
1 ixx.1 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧𝑧 𝑆 𝑦 ) } )
2 xrex * ∈ V
3 ssrab2 { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧𝑧 𝑆 𝑦 ) } ⊆ ℝ*
4 2 3 elpwi2 { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧𝑧 𝑆 𝑦 ) } ∈ 𝒫 ℝ*
5 4 rgen2w 𝑥 ∈ ℝ*𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧𝑧 𝑆 𝑦 ) } ∈ 𝒫 ℝ*
6 1 fmpo ( ∀ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧𝑧 𝑆 𝑦 ) } ∈ 𝒫 ℝ*𝑂 : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* )
7 5 6 mpbi 𝑂 : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ*