Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007) (Revised by Mario Carneiro, 16-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| Assertion | ixxf | ⊢ 𝑂 : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| 2 | xrex | ⊢ ℝ* ∈ V | |
| 3 | ssrab2 | ⊢ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ⊆ ℝ* | |
| 4 | 2 3 | elpwi2 | ⊢ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ∈ 𝒫 ℝ* |
| 5 | 4 | rgen2w | ⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ∈ 𝒫 ℝ* |
| 6 | 1 | fmpo | ⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ∈ 𝒫 ℝ* ↔ 𝑂 : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* ) |
| 7 | 5 6 | mpbi | ⊢ 𝑂 : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |