Step |
Hyp |
Ref |
Expression |
1 |
|
ixx.1 |
⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) |
2 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑧 ↔ 𝐴 𝑅 𝑧 ) ) |
3 |
2
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) ↔ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) ) ) |
4 |
3
|
rabbidv |
⊢ ( 𝑥 = 𝐴 → { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } = { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) |
5 |
|
breq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑧 𝑆 𝑦 ↔ 𝑧 𝑆 𝐵 ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) ↔ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) ) ) |
7 |
6
|
rabbidv |
⊢ ( 𝑦 = 𝐵 → { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } = { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) } ) |
8 |
|
xrex |
⊢ ℝ* ∈ V |
9 |
8
|
rabex |
⊢ { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) } ∈ V |
10 |
4 7 1 9
|
ovmpo |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 𝑂 𝐵 ) = { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) } ) |