Metamath Proof Explorer


Theorem ja

Description: Inference joining the antecedents of two premises. For partial converses, see jarri and jarli . (Contributed by NM, 24-Jan-1993) (Proof shortened by Mel L. O'Cat, 19-Feb-2008)

Ref Expression
Hypotheses ja.1 ( ¬ 𝜑𝜒 )
ja.2 ( 𝜓𝜒 )
Assertion ja ( ( 𝜑𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 ja.1 ( ¬ 𝜑𝜒 )
2 ja.2 ( 𝜓𝜒 )
3 2 imim2i ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) )
4 3 1 pm2.61d1 ( ( 𝜑𝜓 ) → 𝜒 )