Metamath Proof Explorer
Description: Inference conjoining and disjoining the antecedents of two implications.
(Contributed by NM, 30-Sep-1999)
|
|
Ref |
Expression |
|
Hypotheses |
jaao.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
|
|
jaao.2 |
⊢ ( 𝜃 → ( 𝜏 → 𝜒 ) ) |
|
Assertion |
jaao |
⊢ ( ( 𝜑 ∧ 𝜃 ) → ( ( 𝜓 ∨ 𝜏 ) → 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
jaao.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
2 |
|
jaao.2 |
⊢ ( 𝜃 → ( 𝜏 → 𝜒 ) ) |
3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜓 → 𝜒 ) ) |
4 |
2
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜏 → 𝜒 ) ) |
5 |
3 4
|
jaod |
⊢ ( ( 𝜑 ∧ 𝜃 ) → ( ( 𝜓 ∨ 𝜏 ) → 𝜒 ) ) |