Metamath Proof Explorer


Theorem jaao

Description: Inference conjoining and disjoining the antecedents of two implications. (Contributed by NM, 30-Sep-1999)

Ref Expression
Hypotheses jaao.1 ( 𝜑 → ( 𝜓𝜒 ) )
jaao.2 ( 𝜃 → ( 𝜏𝜒 ) )
Assertion jaao ( ( 𝜑𝜃 ) → ( ( 𝜓𝜏 ) → 𝜒 ) )

Proof

Step Hyp Ref Expression
1 jaao.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 jaao.2 ( 𝜃 → ( 𝜏𝜒 ) )
3 1 adantr ( ( 𝜑𝜃 ) → ( 𝜓𝜒 ) )
4 2 adantl ( ( 𝜑𝜃 ) → ( 𝜏𝜒 ) )
5 3 4 jaod ( ( 𝜑𝜃 ) → ( ( 𝜓𝜏 ) → 𝜒 ) )