Metamath Proof Explorer


Theorem jaoa

Description: Inference disjoining and conjoining the antecedents of two implications. (Contributed by Stefan Allan, 1-Nov-2008)

Ref Expression
Hypotheses jaao.1 ( 𝜑 → ( 𝜓𝜒 ) )
jaao.2 ( 𝜃 → ( 𝜏𝜒 ) )
Assertion jaoa ( ( 𝜑𝜃 ) → ( ( 𝜓𝜏 ) → 𝜒 ) )

Proof

Step Hyp Ref Expression
1 jaao.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 jaao.2 ( 𝜃 → ( 𝜏𝜒 ) )
3 1 adantrd ( 𝜑 → ( ( 𝜓𝜏 ) → 𝜒 ) )
4 2 adantld ( 𝜃 → ( ( 𝜓𝜏 ) → 𝜒 ) )
5 3 4 jaoi ( ( 𝜑𝜃 ) → ( ( 𝜓𝜏 ) → 𝜒 ) )