Metamath Proof Explorer
Description: Inference disjoining and conjoining the antecedents of two implications.
(Contributed by Stefan Allan, 1-Nov-2008)
|
|
Ref |
Expression |
|
Hypotheses |
jaao.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
|
|
jaao.2 |
⊢ ( 𝜃 → ( 𝜏 → 𝜒 ) ) |
|
Assertion |
jaoa |
⊢ ( ( 𝜑 ∨ 𝜃 ) → ( ( 𝜓 ∧ 𝜏 ) → 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
jaao.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
2 |
|
jaao.2 |
⊢ ( 𝜃 → ( 𝜏 → 𝜒 ) ) |
3 |
1
|
adantrd |
⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜏 ) → 𝜒 ) ) |
4 |
2
|
adantld |
⊢ ( 𝜃 → ( ( 𝜓 ∧ 𝜏 ) → 𝜒 ) ) |
5 |
3 4
|
jaoi |
⊢ ( ( 𝜑 ∨ 𝜃 ) → ( ( 𝜓 ∧ 𝜏 ) → 𝜒 ) ) |