Metamath Proof Explorer


Theorem jaob

Description: Disjunction of antecedents. Compare Theorem *4.77 of WhiteheadRussell p. 121. (Contributed by NM, 30-May-1994) (Proof shortened by Wolf Lammen, 9-Dec-2012)

Ref Expression
Assertion jaob ( ( ( 𝜑𝜒 ) → 𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 pm2.67-2 ( ( ( 𝜑𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) )
2 olc ( 𝜒 → ( 𝜑𝜒 ) )
3 2 imim1i ( ( ( 𝜑𝜒 ) → 𝜓 ) → ( 𝜒𝜓 ) )
4 1 3 jca ( ( ( 𝜑𝜒 ) → 𝜓 ) → ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) )
5 pm3.44 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) → ( ( 𝜑𝜒 ) → 𝜓 ) )
6 4 5 impbii ( ( ( 𝜑𝜒 ) → 𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) )