Metamath Proof Explorer
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005)
|
|
Ref |
Expression |
|
Hypotheses |
jaodan.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
|
|
jaodan.2 |
⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜒 ) |
|
Assertion |
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜃 ) ) → 𝜒 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
jaodan.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
| 2 |
|
jaodan.2 |
⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜒 ) |
| 3 |
1
|
ex |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
| 4 |
2
|
ex |
⊢ ( 𝜑 → ( 𝜃 → 𝜒 ) ) |
| 5 |
3 4
|
jaod |
⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ) → 𝜒 ) ) |
| 6 |
5
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜃 ) ) → 𝜒 ) |