Metamath Proof Explorer


Theorem jaodan

Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005)

Ref Expression
Hypotheses jaodan.1 ( ( 𝜑𝜓 ) → 𝜒 )
jaodan.2 ( ( 𝜑𝜃 ) → 𝜒 )
Assertion jaodan ( ( 𝜑 ∧ ( 𝜓𝜃 ) ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 jaodan.1 ( ( 𝜑𝜓 ) → 𝜒 )
2 jaodan.2 ( ( 𝜑𝜃 ) → 𝜒 )
3 1 ex ( 𝜑 → ( 𝜓𝜒 ) )
4 2 ex ( 𝜑 → ( 𝜃𝜒 ) )
5 3 4 jaod ( 𝜑 → ( ( 𝜓𝜃 ) → 𝜒 ) )
6 5 imp ( ( 𝜑 ∧ ( 𝜓𝜃 ) ) → 𝜒 )