Metamath Proof Explorer


Theorem jaoi2

Description: Inference removing a negated conjunct in a disjunction of an antecedent if this conjunct is part of the disjunction. (Contributed by Alexander van der Vekens, 3-Nov-2017) (Proof shortened by Wolf Lammen, 21-Sep-2018)

Ref Expression
Hypothesis jaoi2.1 ( ( 𝜑 ∨ ( ¬ 𝜑𝜒 ) ) → 𝜓 )
Assertion jaoi2 ( ( 𝜑𝜒 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 jaoi2.1 ( ( 𝜑 ∨ ( ¬ 𝜑𝜒 ) ) → 𝜓 )
2 pm5.63 ( ( 𝜑𝜒 ) ↔ ( 𝜑 ∨ ( ¬ 𝜑𝜒 ) ) )
3 2 1 sylbi ( ( 𝜑𝜒 ) → 𝜓 )