Metamath Proof Explorer


Theorem jca2

Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010)

Ref Expression
Hypotheses jca2.1 ( 𝜑 → ( 𝜓𝜒 ) )
jca2.2 ( 𝜓𝜃 )
Assertion jca2 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 jca2.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 jca2.2 ( 𝜓𝜃 )
3 2 a1i ( 𝜑 → ( 𝜓𝜃 ) )
4 1 3 jcad ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )