Metamath Proof Explorer


Theorem jca31

Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009)

Ref Expression
Hypotheses jca31.1 ( 𝜑𝜓 )
jca31.2 ( 𝜑𝜒 )
jca31.3 ( 𝜑𝜃 )
Assertion jca31 ( 𝜑 → ( ( 𝜓𝜒 ) ∧ 𝜃 ) )

Proof

Step Hyp Ref Expression
1 jca31.1 ( 𝜑𝜓 )
2 jca31.2 ( 𝜑𝜒 )
3 jca31.3 ( 𝜑𝜃 )
4 1 2 jca ( 𝜑 → ( 𝜓𝜒 ) )
5 4 3 jca ( 𝜑 → ( ( 𝜓𝜒 ) ∧ 𝜃 ) )