Metamath Proof Explorer


Theorem jccir

Description: Inference conjoining a consequent of a consequent to the right of the consequent in an implication. See also ex-natded5.3i . (Contributed by Mario Carneiro, 9-Feb-2017) (Revised by AV, 20-Aug-2019)

Ref Expression
Hypotheses jccir.1 ( 𝜑𝜓 )
jccir.2 ( 𝜓𝜒 )
Assertion jccir ( 𝜑 → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 jccir.1 ( 𝜑𝜓 )
2 jccir.2 ( 𝜓𝜒 )
3 1 2 syl ( 𝜑𝜒 )
4 1 3 jca ( 𝜑 → ( 𝜓𝜒 ) )