Metamath Proof Explorer


Theorem jctild

Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005)

Ref Expression
Hypotheses jctild.1 ( 𝜑 → ( 𝜓𝜒 ) )
jctild.2 ( 𝜑𝜃 )
Assertion jctild ( 𝜑 → ( 𝜓 → ( 𝜃𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 jctild.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 jctild.2 ( 𝜑𝜃 )
3 2 a1d ( 𝜑 → ( 𝜓𝜃 ) )
4 3 1 jcad ( 𝜑 → ( 𝜓 → ( 𝜃𝜒 ) ) )