Step |
Hyp |
Ref |
Expression |
1 |
|
jensen.1 |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
2 |
|
jensen.2 |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
3 |
|
jensen.3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ 𝐷 ) |
4 |
|
jensen.4 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
5 |
|
jensen.5 |
⊢ ( 𝜑 → 𝑇 : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
6 |
|
jensen.6 |
⊢ ( 𝜑 → 𝑋 : 𝐴 ⟶ 𝐷 ) |
7 |
|
jensen.7 |
⊢ ( 𝜑 → 0 < ( ℂfld Σg 𝑇 ) ) |
8 |
|
jensen.8 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ≤ ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) |
9 |
|
jensenlem.1 |
⊢ ( 𝜑 → ¬ 𝑧 ∈ 𝐵 ) |
10 |
|
jensenlem.2 |
⊢ ( 𝜑 → ( 𝐵 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
11 |
|
jensenlem.s |
⊢ 𝑆 = ( ℂfld Σg ( 𝑇 ↾ 𝐵 ) ) |
12 |
|
jensenlem.l |
⊢ 𝐿 = ( ℂfld Σg ( 𝑇 ↾ ( 𝐵 ∪ { 𝑧 } ) ) ) |
13 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
14 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
15 |
|
cnring |
⊢ ℂfld ∈ Ring |
16 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
17 |
15 16
|
mp1i |
⊢ ( 𝜑 → ℂfld ∈ CMnd ) |
18 |
10
|
unssad |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
19 |
4 18
|
ssfid |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
20 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
21 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
22 |
20 21
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
23 |
18
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
24 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑇 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
25 |
23 24
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
26 |
22 25
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑥 ) ∈ ℂ ) |
27 |
10
|
unssbd |
⊢ ( 𝜑 → { 𝑧 } ⊆ 𝐴 ) |
28 |
|
vex |
⊢ 𝑧 ∈ V |
29 |
28
|
snss |
⊢ ( 𝑧 ∈ 𝐴 ↔ { 𝑧 } ⊆ 𝐴 ) |
30 |
27 29
|
sylibr |
⊢ ( 𝜑 → 𝑧 ∈ 𝐴 ) |
31 |
5 30
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑇 ‘ 𝑧 ) ∈ ( 0 [,) +∞ ) ) |
32 |
22 31
|
sselid |
⊢ ( 𝜑 → ( 𝑇 ‘ 𝑧 ) ∈ ℂ ) |
33 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑧 ) ) |
34 |
13 14 17 19 26 30 9 32 33
|
gsumunsn |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑥 ∈ ( 𝐵 ∪ { 𝑧 } ) ↦ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( ℂfld Σg ( 𝑥 ∈ 𝐵 ↦ ( 𝑇 ‘ 𝑥 ) ) ) + ( 𝑇 ‘ 𝑧 ) ) ) |
35 |
5 10
|
feqresmpt |
⊢ ( 𝜑 → ( 𝑇 ↾ ( 𝐵 ∪ { 𝑧 } ) ) = ( 𝑥 ∈ ( 𝐵 ∪ { 𝑧 } ) ↦ ( 𝑇 ‘ 𝑥 ) ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑇 ↾ ( 𝐵 ∪ { 𝑧 } ) ) ) = ( ℂfld Σg ( 𝑥 ∈ ( 𝐵 ∪ { 𝑧 } ) ↦ ( 𝑇 ‘ 𝑥 ) ) ) ) |
37 |
5 18
|
feqresmpt |
⊢ ( 𝜑 → ( 𝑇 ↾ 𝐵 ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑇 ‘ 𝑥 ) ) ) |
38 |
37
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑇 ↾ 𝐵 ) ) = ( ℂfld Σg ( 𝑥 ∈ 𝐵 ↦ ( 𝑇 ‘ 𝑥 ) ) ) ) |
39 |
38
|
oveq1d |
⊢ ( 𝜑 → ( ( ℂfld Σg ( 𝑇 ↾ 𝐵 ) ) + ( 𝑇 ‘ 𝑧 ) ) = ( ( ℂfld Σg ( 𝑥 ∈ 𝐵 ↦ ( 𝑇 ‘ 𝑥 ) ) ) + ( 𝑇 ‘ 𝑧 ) ) ) |
40 |
34 36 39
|
3eqtr4d |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑇 ↾ ( 𝐵 ∪ { 𝑧 } ) ) ) = ( ( ℂfld Σg ( 𝑇 ↾ 𝐵 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) |
41 |
11
|
oveq1i |
⊢ ( 𝑆 + ( 𝑇 ‘ 𝑧 ) ) = ( ( ℂfld Σg ( 𝑇 ↾ 𝐵 ) ) + ( 𝑇 ‘ 𝑧 ) ) |
42 |
40 12 41
|
3eqtr4g |
⊢ ( 𝜑 → 𝐿 = ( 𝑆 + ( 𝑇 ‘ 𝑧 ) ) ) |