| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
⊢ ∅ ∈ V |
| 2 |
|
eqid |
⊢ ( lub ‘ ∅ ) = ( lub ‘ ∅ ) |
| 3 |
|
eqid |
⊢ ( join ‘ ∅ ) = ( join ‘ ∅ ) |
| 4 |
2 3
|
joinfval |
⊢ ( ∅ ∈ V → ( join ‘ ∅ ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( lub ‘ ∅ ) 𝑧 } ) |
| 5 |
1 4
|
ax-mp |
⊢ ( join ‘ ∅ ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( lub ‘ ∅ ) 𝑧 } |
| 6 |
|
df-oprab |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( lub ‘ ∅ ) 𝑧 } = { 𝑤 ∣ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( lub ‘ ∅ ) 𝑧 ) } |
| 7 |
|
br0 |
⊢ ¬ { 𝑥 , 𝑦 } ∅ 𝑧 |
| 8 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
| 9 |
|
eqid |
⊢ ( le ‘ ∅ ) = ( le ‘ ∅ ) |
| 10 |
|
biid |
⊢ ( ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) ) |
| 11 |
|
id |
⊢ ( ∅ ∈ V → ∅ ∈ V ) |
| 12 |
8 9 2 10 11
|
lubfval |
⊢ ( ∅ ∈ V → ( lub ‘ ∅ ) = ( ( 𝑤 ∈ 𝒫 ∅ ↦ ( ℩ 𝑧 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ { 𝑤 ∣ ∃! 𝑧 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) } ) ) |
| 13 |
1 12
|
ax-mp |
⊢ ( lub ‘ ∅ ) = ( ( 𝑤 ∈ 𝒫 ∅ ↦ ( ℩ 𝑧 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ { 𝑤 ∣ ∃! 𝑧 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) } ) |
| 14 |
|
reu0 |
⊢ ¬ ∃! 𝑧 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) |
| 15 |
14
|
abf |
⊢ { 𝑤 ∣ ∃! 𝑧 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) } = ∅ |
| 16 |
15
|
reseq2i |
⊢ ( ( 𝑤 ∈ 𝒫 ∅ ↦ ( ℩ 𝑧 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ { 𝑤 ∣ ∃! 𝑧 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) } ) = ( ( 𝑤 ∈ 𝒫 ∅ ↦ ( ℩ 𝑧 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ ∅ ) |
| 17 |
|
res0 |
⊢ ( ( 𝑤 ∈ 𝒫 ∅ ↦ ( ℩ 𝑧 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ ∅ ) = ∅ |
| 18 |
16 17
|
eqtri |
⊢ ( ( 𝑤 ∈ 𝒫 ∅ ↦ ( ℩ 𝑧 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ { 𝑤 ∣ ∃! 𝑧 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑦 ∈ ∅ ( ∀ 𝑥 ∈ 𝑤 𝑥 ( le ‘ ∅ ) 𝑦 → 𝑧 ( le ‘ ∅ ) 𝑦 ) ) } ) = ∅ |
| 19 |
13 18
|
eqtri |
⊢ ( lub ‘ ∅ ) = ∅ |
| 20 |
19
|
breqi |
⊢ ( { 𝑥 , 𝑦 } ( lub ‘ ∅ ) 𝑧 ↔ { 𝑥 , 𝑦 } ∅ 𝑧 ) |
| 21 |
7 20
|
mtbir |
⊢ ¬ { 𝑥 , 𝑦 } ( lub ‘ ∅ ) 𝑧 |
| 22 |
21
|
intnan |
⊢ ¬ ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( lub ‘ ∅ ) 𝑧 ) |
| 23 |
22
|
nex |
⊢ ¬ ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( lub ‘ ∅ ) 𝑧 ) |
| 24 |
23
|
nex |
⊢ ¬ ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( lub ‘ ∅ ) 𝑧 ) |
| 25 |
24
|
nex |
⊢ ¬ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( lub ‘ ∅ ) 𝑧 ) |
| 26 |
25
|
abf |
⊢ { 𝑤 ∣ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( lub ‘ ∅ ) 𝑧 ) } = ∅ |
| 27 |
6 26
|
eqtri |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( lub ‘ ∅ ) 𝑧 } = ∅ |
| 28 |
5 27
|
eqtri |
⊢ ( join ‘ ∅ ) = ∅ |