| Step |
Hyp |
Ref |
Expression |
| 1 |
|
joincl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
joincl.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
joincl.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
| 4 |
|
joincl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
joincl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
joincl.e |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) |
| 7 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
| 8 |
7 2 3 4 5
|
joinval |
⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) = ( ( lub ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
| 9 |
7 2 3 4 5
|
joindef |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ↔ { 𝑋 , 𝑌 } ∈ dom ( lub ‘ 𝐾 ) ) ) |
| 10 |
6 9
|
mpbid |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ∈ dom ( lub ‘ 𝐾 ) ) |
| 11 |
1 7 3 10
|
lubcl |
⊢ ( 𝜑 → ( ( lub ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ∈ 𝐵 ) |
| 12 |
8 11
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |