Metamath Proof Explorer


Theorem joincl

Description: Closure of join of elements in the domain. (Contributed by NM, 12-Sep-2018)

Ref Expression
Hypotheses joincl.b 𝐵 = ( Base ‘ 𝐾 )
joincl.j = ( join ‘ 𝐾 )
joincl.k ( 𝜑𝐾𝑉 )
joincl.x ( 𝜑𝑋𝐵 )
joincl.y ( 𝜑𝑌𝐵 )
joincl.e ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
Assertion joincl ( 𝜑 → ( 𝑋 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 joincl.b 𝐵 = ( Base ‘ 𝐾 )
2 joincl.j = ( join ‘ 𝐾 )
3 joincl.k ( 𝜑𝐾𝑉 )
4 joincl.x ( 𝜑𝑋𝐵 )
5 joincl.y ( 𝜑𝑌𝐵 )
6 joincl.e ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
7 eqid ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 )
8 7 2 3 4 5 joinval ( 𝜑 → ( 𝑋 𝑌 ) = ( ( lub ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) )
9 7 2 3 4 5 joindef ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ↔ { 𝑋 , 𝑌 } ∈ dom ( lub ‘ 𝐾 ) ) )
10 6 9 mpbid ( 𝜑 → { 𝑋 , 𝑌 } ∈ dom ( lub ‘ 𝐾 ) )
11 1 7 3 10 lubcl ( 𝜑 → ( ( lub ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ∈ 𝐵 )
12 8 11 eqeltrd ( 𝜑 → ( 𝑋 𝑌 ) ∈ 𝐵 )