Step |
Hyp |
Ref |
Expression |
1 |
|
joincom.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
joincom.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
prcom |
⊢ { 𝑌 , 𝑋 } = { 𝑋 , 𝑌 } |
4 |
3
|
fveq2i |
⊢ ( ( lub ‘ 𝐾 ) ‘ { 𝑌 , 𝑋 } ) = ( ( lub ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) |
5 |
4
|
a1i |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑌 , 𝑋 } ) = ( ( lub ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
6 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
7 |
|
simp1 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ 𝑉 ) |
8 |
|
simp3 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
9 |
|
simp2 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
10 |
6 2 7 8 9
|
joinval |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑋 ) = ( ( lub ‘ 𝐾 ) ‘ { 𝑌 , 𝑋 } ) ) |
11 |
6 2 7 9 8
|
joinval |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) = ( ( lub ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
12 |
5 10 11
|
3eqtr4rd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |