Metamath Proof Explorer


Theorem joindef

Description: Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018)

Ref Expression
Hypotheses joindef.u 𝑈 = ( lub ‘ 𝐾 )
joindef.j = ( join ‘ 𝐾 )
joindef.k ( 𝜑𝐾𝑉 )
joindef.x ( 𝜑𝑋𝑊 )
joindef.y ( 𝜑𝑌𝑍 )
Assertion joindef ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ↔ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) )

Proof

Step Hyp Ref Expression
1 joindef.u 𝑈 = ( lub ‘ 𝐾 )
2 joindef.j = ( join ‘ 𝐾 )
3 joindef.k ( 𝜑𝐾𝑉 )
4 joindef.x ( 𝜑𝑋𝑊 )
5 joindef.y ( 𝜑𝑌𝑍 )
6 1 2 joindm ( 𝐾𝑉 → dom = { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑥 , 𝑦 } ∈ dom 𝑈 } )
7 6 eleq2d ( 𝐾𝑉 → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ↔ ⟨ 𝑋 , 𝑌 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑥 , 𝑦 } ∈ dom 𝑈 } ) )
8 3 7 syl ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ↔ ⟨ 𝑋 , 𝑌 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑥 , 𝑦 } ∈ dom 𝑈 } ) )
9 preq1 ( 𝑥 = 𝑋 → { 𝑥 , 𝑦 } = { 𝑋 , 𝑦 } )
10 9 eleq1d ( 𝑥 = 𝑋 → ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ { 𝑋 , 𝑦 } ∈ dom 𝑈 ) )
11 preq2 ( 𝑦 = 𝑌 → { 𝑋 , 𝑦 } = { 𝑋 , 𝑌 } )
12 11 eleq1d ( 𝑦 = 𝑌 → ( { 𝑋 , 𝑦 } ∈ dom 𝑈 ↔ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) )
13 10 12 opelopabg ( ( 𝑋𝑊𝑌𝑍 ) → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑥 , 𝑦 } ∈ dom 𝑈 } ↔ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) )
14 4 5 13 syl2anc ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ { 𝑥 , 𝑦 } ∈ dom 𝑈 } ↔ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) )
15 8 14 bitrd ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ↔ { 𝑋 , 𝑌 } ∈ dom 𝑈 ) )