Step |
Hyp |
Ref |
Expression |
1 |
|
joindm2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
joindm2.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
3 |
|
joindm2.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
4 |
|
joindm2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
1 4 2
|
joindmss |
⊢ ( 𝜑 → dom ∨ ⊆ ( 𝐵 × 𝐵 ) ) |
6 |
|
eqss |
⊢ ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ( dom ∨ ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝐵 × 𝐵 ) ⊆ dom ∨ ) ) |
7 |
6
|
baib |
⊢ ( dom ∨ ⊆ ( 𝐵 × 𝐵 ) → ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ( 𝐵 × 𝐵 ) ⊆ dom ∨ ) ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ( 𝐵 × 𝐵 ) ⊆ dom ∨ ) ) |
9 |
|
relxp |
⊢ Rel ( 𝐵 × 𝐵 ) |
10 |
|
ssrel |
⊢ ( Rel ( 𝐵 × 𝐵 ) → ( ( 𝐵 × 𝐵 ) ⊆ dom ∨ ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ dom ∨ ) ) ) |
11 |
9 10
|
mp1i |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐵 ) ⊆ dom ∨ ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ dom ∨ ) ) ) |
12 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
14 |
|
vex |
⊢ 𝑥 ∈ V |
15 |
14
|
a1i |
⊢ ( 𝜑 → 𝑥 ∈ V ) |
16 |
|
vex |
⊢ 𝑦 ∈ V |
17 |
16
|
a1i |
⊢ ( 𝜑 → 𝑦 ∈ V ) |
18 |
3 4 2 15 17
|
joindef |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ dom ∨ ↔ { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) |
19 |
13 18
|
imbi12d |
⊢ ( 𝜑 → ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ dom ∨ ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) ) |
20 |
19
|
2albidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ dom ∨ ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) ) |
21 |
|
r2al |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) |
22 |
20 21
|
bitr4di |
⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ dom ∨ ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) |
23 |
8 11 22
|
3bitrd |
⊢ ( 𝜑 → ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) |