Step |
Hyp |
Ref |
Expression |
1 |
|
joindm2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
joindm2.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
3 |
|
joindm2.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
4 |
|
joindm2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
|
joindm3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
6 |
1 2 3 4
|
joindm2 |
⊢ ( 𝜑 → ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 { 𝑥 , 𝑦 } ∈ dom 𝑈 ) ) |
7 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
8 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
9 |
7 8
|
prssd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → { 𝑥 , 𝑦 } ⊆ 𝐵 ) |
10 |
|
biid |
⊢ ( ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ) |
11 |
1 5 3 10 2
|
lubeldm |
⊢ ( 𝜑 → ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ) ) ) |
12 |
11
|
baibd |
⊢ ( ( 𝜑 ∧ { 𝑥 , 𝑦 } ⊆ 𝐵 ) → ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ) ) |
13 |
9 12
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ) ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐾 ∈ 𝑉 ) |
15 |
1 5 4 14 7 8
|
joinval2lem |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ( 𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤 ) → 𝑧 ≤ 𝑤 ) ) ) ) |
16 |
15
|
reubidv |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ∃! 𝑧 ∈ 𝐵 ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ( 𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤 ) → 𝑧 ≤ 𝑤 ) ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑧 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑣 ∈ { 𝑥 , 𝑦 } 𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ∃! 𝑧 ∈ 𝐵 ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ( 𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤 ) → 𝑧 ≤ 𝑤 ) ) ) ) |
18 |
13 17
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ ∃! 𝑧 ∈ 𝐵 ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ( 𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤 ) → 𝑧 ≤ 𝑤 ) ) ) ) |
19 |
18
|
2ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 { 𝑥 , 𝑦 } ∈ dom 𝑈 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃! 𝑧 ∈ 𝐵 ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ( 𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤 ) → 𝑧 ≤ 𝑤 ) ) ) ) |
20 |
6 19
|
bitrd |
⊢ ( 𝜑 → ( dom ∨ = ( 𝐵 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃! 𝑧 ∈ 𝐵 ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ( 𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤 ) → 𝑧 ≤ 𝑤 ) ) ) ) |